Showing 941 - 954 results of 954 for search '(( algorithm python function ) OR ( algorithm both function ))', query time: 0.24s Refine Results
  1. 941

    Image 3_Machine learning-based diagnostic and prognostic models for breast cancer: a new frontier on the clinical application of natural killer cell-related gene signatures in prec... by Yutong Fang (16621143)

    Published 2025
    “…We constructed ML-based diagnostic models using 12 algorithms and evaluated their performance for identifying the optimal ML diagnostic model. …”
  2. 942

    Image 9_Machine learning-based diagnostic and prognostic models for breast cancer: a new frontier on the clinical application of natural killer cell-related gene signatures in prec... by Yutong Fang (16621143)

    Published 2025
    “…We constructed ML-based diagnostic models using 12 algorithms and evaluated their performance for identifying the optimal ML diagnostic model. …”
  3. 943

    Table 2_Identification of regulatory cell death-related genes during MASH progression using bioinformatics analysis and machine learning strategies.xlsx by Zhiqiang Lin (747094)

    Published 2025
    “…A total of 101 combinations of 10 machine learning algorithms were employed to screen for characteristic RCD-related differentially expressed genes (DEGs) that reflect the progression of MASH. …”
  4. 944

    Image 6_Machine learning-based diagnostic and prognostic models for breast cancer: a new frontier on the clinical application of natural killer cell-related gene signatures in prec... by Yutong Fang (16621143)

    Published 2025
    “…We constructed ML-based diagnostic models using 12 algorithms and evaluated their performance for identifying the optimal ML diagnostic model. …”
  5. 945

    Image 5_Machine learning-based diagnostic and prognostic models for breast cancer: a new frontier on the clinical application of natural killer cell-related gene signatures in prec... by Yutong Fang (16621143)

    Published 2025
    “…We constructed ML-based diagnostic models using 12 algorithms and evaluated their performance for identifying the optimal ML diagnostic model. …”
  6. 946

    Table 2_Machine learning-based diagnostic and prognostic models for breast cancer: a new frontier on the clinical application of natural killer cell-related gene signatures in prec... by Yutong Fang (16621143)

    Published 2025
    “…We constructed ML-based diagnostic models using 12 algorithms and evaluated their performance for identifying the optimal ML diagnostic model. …”
  7. 947

    Table 1_Identification of regulatory cell death-related genes during MASH progression using bioinformatics analysis and machine learning strategies.xlsx by Zhiqiang Lin (747094)

    Published 2025
    “…A total of 101 combinations of 10 machine learning algorithms were employed to screen for characteristic RCD-related differentially expressed genes (DEGs) that reflect the progression of MASH. …”
  8. 948

    Image 10_Machine learning-based diagnostic and prognostic models for breast cancer: a new frontier on the clinical application of natural killer cell-related gene signatures in pre... by Yutong Fang (16621143)

    Published 2025
    “…We constructed ML-based diagnostic models using 12 algorithms and evaluated their performance for identifying the optimal ML diagnostic model. …”
  9. 949

    Image 2_Machine learning-based diagnostic and prognostic models for breast cancer: a new frontier on the clinical application of natural killer cell-related gene signatures in prec... by Yutong Fang (16621143)

    Published 2025
    “…We constructed ML-based diagnostic models using 12 algorithms and evaluated their performance for identifying the optimal ML diagnostic model. …”
  10. 950

    Image 7_Machine learning-based diagnostic and prognostic models for breast cancer: a new frontier on the clinical application of natural killer cell-related gene signatures in prec... by Yutong Fang (16621143)

    Published 2025
    “…We constructed ML-based diagnostic models using 12 algorithms and evaluated their performance for identifying the optimal ML diagnostic model. …”
  11. 951

    Data Sheet 1_Resveratrol contributes to NK cell-mediated breast cancer cytotoxicity by upregulating ULBP2 through miR-17-5p downmodulation and activation of MINK1/JNK/c-Jun signali... by Bisha Ding (5803799)

    Published 2025
    “…UL16-binding protein 2 (ULBP2), always expressed or elevated on cancer cells, functions as a key NKG2D ligand. ULBP2-NKG2D ligation initiates NK cell activation and subsequent targeted elimination of cancer cells. …”
  12. 952

    Image 1_Machine learning-based diagnostic and prognostic models for breast cancer: a new frontier on the clinical application of natural killer cell-related gene signatures in prec... by Yutong Fang (16621143)

    Published 2025
    “…We constructed ML-based diagnostic models using 12 algorithms and evaluated their performance for identifying the optimal ML diagnostic model. …”
  13. 953

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows by Pierre-Alexis DELAROCHE (22092572)

    Published 2025
    “…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”
  14. 954

    FCP dataset for forecasting temperature, PV, price, and load by Hanwen Zhang (18259666)

    Published 2025
    “…</p><p dir="ltr">• To design and develop data-driven algorithms for accurate and reliable charging supplydemand forecasting and cost-optimal scheduling with large-volume and high-resolution data.…”