Showing 21 - 29 results of 29 for search '(( algorithm python function ) OR ( algorithm low functional ))~', query time: 0.37s Refine Results
  1. 21

    Map Matching on Low Sampling Rate Trajectories Through Deep Inverse Reinforcement Learning and Multi Intention Modeling by Reza Safarzadeh (18072472)

    Published 2024
    “…<p dir="ltr">The codes for the paper titled “<b>Map Matching on Low Sampling Rate Trajectories Through Deep Inverse Reinforcement Learning and Multi-Intention Modeling</b>".…”
  2. 22

    Code and Data for 'Fabrication and testing of lensed fiber optic probes for distance sensing using common path low coherence interferometry' by Radu Stancu (21165068)

    Published 2025
    “…Distance Sensing</p><p dir="ltr">Code and data to demonstrate extracting distance sensing data from A-scans and to generate Fig. 8 using the algorithm described in Fig. 7. Functions to generate distance measurements are in 'distance_sensing_utilities.py' and an example of how to use this on data in the 'data' folder is in 'distance_sensing_example.py', which generates Fig 8. …”
  3. 23

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) by Erola Fenollosa (20977421)

    Published 2025
    “…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…”
  4. 24

    S1 Graphical abstract - by José M. Rivera-Arbeláez (12418512)

    Published 2025
    “…<div><p>Engineered heart tissues (EHTs) have shown great potential in recapitulating tissue organization, functions, and cell-cell interactions of the human heart <i>in vitro</i>. …”
  5. 25

    Mechanomics Code - JVT by Carlo Vittorio Cannistraci (5854046)

    Published 2025
    “…The functions were tested respectively in: MATLAB 2018a or youger, Python 3.9.4, R 4.0.3.…”
  6. 26

    PySilsub—a toolbox for silent substitution by Joel Martin (11864048)

    Published 2022
    “…<p>A normal human retina contains several classes of photosensitive cell—rods for low-light vision, three types of cones for daylight vision, and the intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin for controlling non-image-forming functions (e.g., pupil size, circadian rhythms). …”
  7. 27

    Code by Baoqiang Chen (21099509)

    Published 2025
    “…This function takes two numeric vectors representing the observations from the high-coupling and low-coupling groups and returns the estimated effect size along with confidence intervals.…”
  8. 28

    Core data by Baoqiang Chen (21099509)

    Published 2025
    “…This function takes two numeric vectors representing the observations from the high-coupling and low-coupling groups and returns the estimated effect size along with confidence intervals.…”
  9. 29

    <b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b> by Shubham Pawar (22471285)

    Published 2025
    “…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…”