Showing 201 - 220 results of 223 for search '(( algorithm python function ) OR ( algorithm pre function ))', query time: 0.23s Refine Results
  1. 201

    Table 4_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  2. 202

    Image 6_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  3. 203

    Image 4_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif by Bin He (75597)

    Published 2025
    “…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
  4. 204

    BioSCape Processed Training Dataset by Alanna Rebelo (17834777)

    Published 2024
    “…The dataset was prepared according to the following pre-agreed criteria:</p><ul><li>As many points as possible were collected</li><li>The classes needed to be even (same number of training points) for the machine learning algorithms</li><li>Points didn’t need to be paired (i.e. paired invasive alien tree and fynbos points)</li><li>It was not necessary to collect training data in all sampling units, though a general effort to avoid bias and to sample across different sampling units was attempted</li></ul><p></p>…”
  5. 205

    Table 5_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx by Filippo Guerri (17017524)

    Published 2024
    “…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
  6. 206

    Table 3_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx by Filippo Guerri (17017524)

    Published 2024
    “…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
  7. 207

    Table 6_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx by Filippo Guerri (17017524)

    Published 2024
    “…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
  8. 208

    Table 2_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx by Filippo Guerri (17017524)

    Published 2024
    “…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
  9. 209

    Table 4_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx by Filippo Guerri (17017524)

    Published 2024
    “…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
  10. 210

    Table 7_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx by Filippo Guerri (17017524)

    Published 2024
    “…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
  11. 211

    Table 1_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx by Filippo Guerri (17017524)

    Published 2024
    “…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
  12. 212

    Table 8_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx by Filippo Guerri (17017524)

    Published 2024
    “…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
  13. 213

    Navigating complex care pathways–healthcare workers’ perspectives on health system barriers for children with tuberculous meningitis in Cape Town, South Africa by Dzunisani Patience Baloyi (19452687)

    Published 2025
    “…We found that children with TBM navigate multiple levels of care categorised into pre-admission and primary care, hospital admission and inpatient care, and post-discharge follow-up care. …”
  14. 214

    Patentability of 3D bioprinting technologies by Phoebe Li (4463947)

    Published 2025
    “…The production of bioprinting typically involves three phases: pre-printing, printing and post-printing stages. …”
  15. 215

    Image 2_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg by Seungmi Kim (11071440)

    Published 2025
    “…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
  16. 216

    Image 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg by Seungmi Kim (11071440)

    Published 2025
    “…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
  17. 217

    Data Sheet 2_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.pdf by Seungmi Kim (11071440)

    Published 2025
    “…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
  18. 218

    Image 3_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg by Seungmi Kim (11071440)

    Published 2025
    “…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
  19. 219

    Table 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.xlsx by Seungmi Kim (11071440)

    Published 2025
    “…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
  20. 220

    Data Sheet 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.pdf by Seungmi Kim (11071440)

    Published 2025
    “…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”