Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm pre » algorithm pca (Expand Search), algorithm where (Expand Search), algorithm used (Expand Search)
pre function » spread function (Expand Search), sphere function (Expand Search), phase function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm pre » algorithm pca (Expand Search), algorithm where (Expand Search), algorithm used (Expand Search)
pre function » spread function (Expand Search), sphere function (Expand Search), phase function (Expand Search)
-
201
Table 4_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.xlsx
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
202
Image 6_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
203
Image 4_Cellular interactions and Ion channel signatures in atrial fibrillation remodeling: insights from single-cell analysis and machine learning.tif
Published 2025“…Ion channel-related genes were extracted from microarray datasets and analyzed for differential expression and functional relevance to AF pathology. Machine learning algorithms (LASSO and SVM) were used to identify signature genes from ion channels in AF, followed by drug-enrichment analysis to explore potential therapeutic options.…”
-
204
BioSCape Processed Training Dataset
Published 2024“…The dataset was prepared according to the following pre-agreed criteria:</p><ul><li>As many points as possible were collected</li><li>The classes needed to be even (same number of training points) for the machine learning algorithms</li><li>Points didn’t need to be paired (i.e. paired invasive alien tree and fynbos points)</li><li>It was not necessary to collect training data in all sampling units, though a general effort to avoid bias and to sample across different sampling units was attempted</li></ul><p></p>…”
-
205
Table 5_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
206
Table 3_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
207
Table 6_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
208
Table 2_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
209
Table 4_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
210
Table 7_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
211
Table 1_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
212
Table 8_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx
Published 2024“…<p>We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. …”
-
213
Navigating complex care pathways–healthcare workers’ perspectives on health system barriers for children with tuberculous meningitis in Cape Town, South Africa
Published 2025“…We found that children with TBM navigate multiple levels of care categorised into pre-admission and primary care, hospital admission and inpatient care, and post-discharge follow-up care. …”
-
214
Patentability of 3D bioprinting technologies
Published 2025“…The production of bioprinting typically involves three phases: pre-printing, printing and post-printing stages. …”
-
215
Image 2_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
216
Image 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
217
Data Sheet 2_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.pdf
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
218
Image 3_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.jpeg
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
219
Table 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.xlsx
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”
-
220
Data Sheet 1_Development of machine learning models with explainable AI for frailty risk prediction and their web-based application in community public health.pdf
Published 2025“…Using these predictors, boosting models outperformed other algorithms, with CatBoost achieving the best performance (ROC-AUC = 0.813 ± 0.014; PR-AUC = 0.748 ± 0.019).…”