Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm wave » algorithm based (Expand Search), algorithm where (Expand Search), algorithm a (Expand Search)
wave function » rate function (Expand Search), value function (Expand Search), a function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm wave » algorithm based (Expand Search), algorithm where (Expand Search), algorithm a (Expand Search)
wave function » rate function (Expand Search), value function (Expand Search), a function (Expand Search)
-
121
Landscape17
Published 2025“…</p><p dir="ltr">We utilized TopSearch, an open-source Python package, to perform landscape exploration, at an estimated cost of 10<sup>5 </sup>CPUh. …”
-
122
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
Published 2025“…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…”
-
123
MCCN Case Study 2 - Spatial projection via modelled data
Published 2025“…This study demonstrates: 1) Description of spatial assets using STAC, 2) Loading heterogeneous data sources into a cube, 3) Spatial projection in xarray using different algorithms offered by the <a href="https://pypi.org/project/PyKrige/" rel="nofollow" target="_blank">pykrige</a> and <a href="https://pypi.org/project/rioxarray/" rel="nofollow" target="_blank">rioxarray</a> packages.…”
-
124
Data Sheet 1_Machine learning models integrating intracranial artery calcification to predict outcomes of mechanical thrombectomy.pdf
Published 2025“…Eleven ML algorithms were trained and validated using Python, and external validation and performance evaluations were conducted. …”
-
125
Table 1_Explainable machine learning prediction of internet addiction among Chinese primary and middle school children and adolescents: a longitudinal study based on positive youth...
Published 2025“…Our study aimed to examine the risk factors associated with IA among Chinese children and adolescents and leverage explainable machine learning (ML) algorithms to predict IA status at the time of assessment, based on Young’s Internet Addiction Test.…”
-
126
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”