Showing 381 - 400 results of 731 for search '(( algorithm python function ) OR ( algorithms within function ))', query time: 0.32s Refine Results
  1. 381

    Image 6_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif by Hanzhang Lyu (22163404)

    Published 2025
    “…</p>Results<p>Plexin-A3 (PLXNA3) emerged as a top risk gene within the ensemble model, which achieved strong predictive performance, surpassing conventional clinical indicators. …”
  2. 382

    Image 5_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif by Hanzhang Lyu (22163404)

    Published 2025
    “…</p>Results<p>Plexin-A3 (PLXNA3) emerged as a top risk gene within the ensemble model, which achieved strong predictive performance, surpassing conventional clinical indicators. …”
  3. 383

    Image 4_A machine learning-derived immune-related prognostic model identifies PLXNA3 as a functional risk gene in colorectal cancer.tif by Hanzhang Lyu (22163404)

    Published 2025
    “…</p>Results<p>Plexin-A3 (PLXNA3) emerged as a top risk gene within the ensemble model, which achieved strong predictive performance, surpassing conventional clinical indicators. …”
  4. 384

    An HSR corridor with m stations and n trains. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  5. 385

    Structure of bi-level programming model. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  6. 386

    Lanzhou-Xi’an HSR corridor. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  7. 387

    Comparison of related studies with our work. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  8. 388

    Unit impedance of each OD pair. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  9. 389

    Subscripts and parameters used in TSSN. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  10. 390

    Occupying rate of v-class seat in each train. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  11. 391

    Schematic diagram of mutation operation. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  12. 392

    The values of other input parameters. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  13. 393

    Optimized unbalanced train operation chart. by Zhipeng Huang (1759759)

    Published 2025
    “…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …”
  14. 394

    Interactive visualization of ocean unsteady flow data based on dynamic adaptive pathline by Fenglin Tian (6002957)

    Published 2025
    “…Moreover, it has the capability to dynamically capture intricate features within complex flow fields.</p>…”
  15. 395
  16. 396

    Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites by Gustav Olanders (3711889)

    Published 2024
    “…In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. …”
  17. 397

    Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites by Gustav Olanders (3711889)

    Published 2024
    “…In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. …”
  18. 398

    Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites by Gustav Olanders (3711889)

    Published 2024
    “…In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. …”
  19. 399

    Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites by Gustav Olanders (3711889)

    Published 2024
    “…In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. …”
  20. 400

    Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites by Gustav Olanders (3711889)

    Published 2024
    “…In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. …”