بدائل البحث:
within function » fibrin function (توسيع البحث), python function (توسيع البحث), protein function (توسيع البحث)
algorithm beach » algorithm etc (توسيع البحث), algorithm which (توسيع البحث), algorithm both (توسيع البحث)
algorithm rate » algorithm based (توسيع البحث), algorithm a (توسيع البحث), algorithm ai (توسيع البحث)
beach function » brain function (توسيع البحث), heart function (توسيع البحث)
rate function » brain function (توسيع البحث), a function (توسيع البحث), gene function (توسيع البحث)
within function » fibrin function (توسيع البحث), python function (توسيع البحث), protein function (توسيع البحث)
algorithm beach » algorithm etc (توسيع البحث), algorithm which (توسيع البحث), algorithm both (توسيع البحث)
algorithm rate » algorithm based (توسيع البحث), algorithm a (توسيع البحث), algorithm ai (توسيع البحث)
beach function » brain function (توسيع البحث), heart function (توسيع البحث)
rate function » brain function (توسيع البحث), a function (توسيع البحث), gene function (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
Multimodal reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
6
-
7
-
8
-
9
The convergence curves of the test functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
10
Single-peaked reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
11
-
12
-
13
-
14
-
15
Test results of multimodal benchmark functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
16
Fixed-dimensional multimodal reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
17
Test results of multimodal benchmark functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
18
Wav2DDK: An automated DDK estimation algorithm (Kadambi et al., 2023)
منشور في 2023"…Estimated rates achieve a high test-retest reliability (<em>r</em> = .95) and show good correlation with the revised ALS functional rating scale speech subscore (<em>r </em>= .67).…"
-
19
-
20