بدائل البحث:
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm rate » algorithm based (توسيع البحث), algorithm a (توسيع البحث), algorithm ai (توسيع البحث)
rate function » brain function (توسيع البحث), a function (توسيع البحث), gene function (توسيع البحث)
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
algorithm rate » algorithm based (توسيع البحث), algorithm a (توسيع البحث), algorithm ai (توسيع البحث)
rate function » brain function (توسيع البحث), a function (توسيع البحث), gene function (توسيع البحث)
-
1
An expectation-maximization algorithm for finding noninvadable stationary states.
منشور في 2020"…<p><i>(a)</i> Noninvadable states by definition can only exist in the region Ω of resource space where the growth rate <i>dN</i><sub><i>i</i></sub>/<i>dt</i> of each species <i>i</i> is zero or negative. …"
-
2
-
3
-
4
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
منشور في 2025"…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
-
5
-
6
-
7
-
8
-
9
Multimodal reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
10
-
11
-
12
-
13
-
14
The convergence curves of the test functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
15
Single-peaked reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
16
-
17
-
18
-
19
-
20
Test results of multimodal benchmark functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"