بدائل البحث:
algorithm spread » algorithm pre (توسيع البحث), algorithms real (توسيع البحث), algorithms sorted (توسيع البحث)
model function » novel function (توسيع البحث), model fusion (توسيع البحث), model reaction (توسيع البحث)
algorithm pca » algorithm a (توسيع البحث), algorithm cl (توسيع البحث), algorithm co (توسيع البحث)
pca function » gpcr function (توسيع البحث), a function (توسيع البحث), fc function (توسيع البحث)
algorithm spread » algorithm pre (توسيع البحث), algorithms real (توسيع البحث), algorithms sorted (توسيع البحث)
model function » novel function (توسيع البحث), model fusion (توسيع البحث), model reaction (توسيع البحث)
algorithm pca » algorithm a (توسيع البحث), algorithm cl (توسيع البحث), algorithm co (توسيع البحث)
pca function » gpcr function (توسيع البحث), a function (توسيع البحث), fc function (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
Reconstructing <i>sparse</i>, binary patterns using message passing algorithms and PCA.
منشور في 2023"…<p>We plot the mse per pattern obtained by the AMP algorithm, <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1010813#pcbi.1010813.e072" target="_blank">Eq (32)</a>, as a function of the effective noise Δ (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1010813#pcbi.1010813.e032" target="_blank">9</a>), for random (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1010813#pcbi.1010813.e044" target="_blank">15</a>) and informed (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1010813#pcbi.1010813.e045" target="_blank">16</a>) initialisations. …"
-
11
-
12
Swarm intelligence algorithms for width and length on influence games
منشور في 2021"…<br><br><div>usage: Main.py [-h] [-a] [-r] [-d D] [-t T] [-i I] [-q Q] [--shape SHAPE] [--sym] [--folder FOLDER] [--seed SEED] [--sum SUM] [--mh MH] [--tagsfile TAGSFILE] [--notags] [--prune] [--excludenodes EXCLUDENODES]<br><br>Calculates the best Influence Spread set on a Weighted Symmetric Graph using PSO<br></div><div><br></div><div><div>positional arguments:</div><div> file</div><div><br></div><div>optional arguments:</div><div> -h, --help: show this help message and exit</div><div> -a: threat file input contents as an Adjacency Matrix</div><div> -r: reverse order of nodes, from (a,b,w) a -> b will be b -> a</div><div> -d D: line separator to use while parsing</div><div> -t T: number of times to execute</div><div> -i I: number of metaheuristic iterations per execution</div><div> -q Q: fixed quota, use 0 = floor(n/2)+1</div><div> --shape SHAPE: shape functions for binarization - list of implemented shape functions: s2,s2_neg,v2,v4</div><div> --sym: consider graph as symmetric instead of directed</div><div> --folder FOLDER: output folder</div><div> --seed SEED: use custom seed for metaheuristic calcs</div><div> --sum SUM: adds a value to all node labels</div><div> --mh MH: metaheuristic to use - list of implemented metaheuristics: {1: 'Swarm', 2: 'Swarm2', 3: 'Swarm_W', 4:</div><div> 'Swarm_L'}</div><div> --tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria</div><div> --notags: do not use first row as node tags - tags will be calculated</div><div> --prune: nodes with outdegree = 0 and indegree > 0, and with outdegree = 1 and neighbor's outdegree > 0 will be excluded</div><div> --excludenodes EXCLUDENODES: nodes to skip, comma separated</div></div>…"
-
13
-
14
-
15
-
16
Principal Component Analysis (PCA) of the independent dataset from the HPC cohort.
منشور في 2021الموضوعات: -
17
-
18
-
19
Swarm intelligence algorithms for multi-objective max-min-ISP
منشور في 2023"…<p>Algorithms implemented on article "<strong>On the max-min influence spread problem: A multi-objective optimization approach</strong>"</p> <p><br></p> <p>usage: Main.py [-h] [-a] [-r] [-d D] [-t T] [-i I] [-q Q] [--shape SHAPE] [--sym] [--folder FOLDER] [--seed SEED] [--spread SPREAD] [--sum SUM] [--mh MH] [--tagsfile TAGSFILE] [--notags] [--prune] [--prunelowdeg] [--excludenodes EXCLUDENODES] [--includeindegzero] [--nodepthcriteria] [--memfile MEMFILE] file</p> <p><br></p> <p>Calculates the best Influence Spread set on a Weighted Graph using PSO</p> <p><br></p> <p>positional arguments:</p> <p>file</p> <p><br></p> <p>options:</p> <p>-h, --help: show this help message and exit</p> <p>-a: read file input contents as an Adjacency Matrix</p> <p>-r: reverse nodes order, reads (b,a,w) instead of (a,b,w)</p> <p>-d D: line separator to use on file parsing</p> <p>-t T: number of times to execute this solver</p> <p>-i I: number of metaheuristic iterations per execution</p> <p>-q Q: fixed quota, use 0 = floor(n/2)+1</p> <p>--shape SHAPE: shape functions for binarization - list of implemented shape functions: s2, s2_neg, v2, v4</p> <p>--sym: consider graph as symmetric instead of directed</p> <p>--folder FOLDER: output folder</p> <p>--seed SEED: use custom seeds for metaheuristic pseudo RNG</p> <p>--spread SPREAD: use specific influence spread model funcion - list of implemented models: LT, IC</p> <p>--sum SUM: adds an extra value to all edge's weight</p> <p>--mh MH: metaheuristic to use - list of implemented metaheuristics: 1 (Swarm3), 3 (Swarm3_W), 4 (Swarm3_L), 5 (Swarm4)</p> <p>--tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria</p> <p>--notags: do not use first row as node tags, instead tags will be calculated</p> <p>--prune: nodes with (1) outdegree = 0 and indegree > 0, and (2) with outdegree = 1 and neighbor's outdegree > 0 will be excluded</p> <p>--prunelowdeg: nodes with low outdegree or degree will be excluded</p> <p>--excludenodes EXCLUDENODES: nodes to skip, must be comma separated</p> <p>--includeindegzero: forces to include nodes with indegree = 0 on all executions</p> <p>--nodepthcriteria: particles will not tie off with spread depth in case of having same fitness and spread</p> <p>--memfile MEMFILE: memory dump of other execution</p>…"
-
20
Swarm intelligence algorithms for multi-objective IMP: Step-by-step improvement
منشور في 2022"…</div><div><br></div><div>positional arguments: </div><div> file </div><div><br></div><div>optional arguments: </div><div> -h, --help: show this help message and exit </div><div> -a: read file input contents as an Adjacency Matrix </div><div> -r: reverse nodes order, reads (b,a,w) instead of (a,b,w) </div><div> -d D: line separator to use on file parsing </div><div> -t T: number of times to execute this solver </div><div> -i I: number of metaheuristic iterations per execution </div><div> -q Q: fixed quota, use 0 = floor(n/2)+1 </div><div> --shape SHAPE: shape functions for binarization - list of implemented shape functions: s2, s2_neg, v2, v4 </div><div> --sym: consider graph as symmetric instead of directed </div><div> --folder FOLDER: output folder </div><div> --seed SEED: use custom seed for metaheuristic pseudo RNG </div><div> --spread SPREAD: use specific influence spread model funcion - list of implemented models: LT, IC </div><div> --sum SUM: adds an extra value to all edge's weight --mh MH: metaheuristic to use - list of implemented metaheuristics: 1 (Swarm3) </div><div> --tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria </div><div> --notags: do not use first row as node tags, instead tags will be calculated </div><div> --prune: nodes with (1) outdegree = 0 and indegree > 0, and (2) with outdegree = 1 and neighbor's outdegree > 0 will be excluded </div><div> --prunelowdeg: nodes with low outdegree or degree will be excluded </div><div> --excludenodes EXCLUDENODES: nodes to skip, must be comma separated </div><div> --includeindegzero: forces to include nodes with indegree = 0 on all executions </div><div> --nodepthcriteria: particles will not tie off with spread depth in case of having same fitness and spread </div>…"