Search alternatives:
algorithm spread » algorithm pre (Expand Search), algorithms real (Expand Search), algorithms sorted (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm l » algorithm cl (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
l function » _ function (Expand Search), a function (Expand Search), 1 function (Expand Search)
algorithm spread » algorithm pre (Expand Search), algorithms real (Expand Search), algorithms sorted (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
algorithm l » algorithm cl (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
l function » _ function (Expand Search), a function (Expand Search), 1 function (Expand Search)
-
1
Motion blur with <i>L</i> = 18 and <i>Φ</i> = 30° for the “caps.bmp” image.
Published 2020Subjects: -
2
Motion blur with <i>L</i> = 16 and <i>Φ</i> = 45° for the “lighthouse2.bmp” image.
Published 2020Subjects: -
3
-
4
-
5
-
6
-
7
-
8
Swarm intelligence algorithms for width and length on influence games
Published 2021“…<br><br><div>usage: Main.py [-h] [-a] [-r] [-d D] [-t T] [-i I] [-q Q] [--shape SHAPE] [--sym] [--folder FOLDER] [--seed SEED] [--sum SUM] [--mh MH] [--tagsfile TAGSFILE] [--notags] [--prune] [--excludenodes EXCLUDENODES]<br><br>Calculates the best Influence Spread set on a Weighted Symmetric Graph using PSO<br></div><div><br></div><div><div>positional arguments:</div><div> file</div><div><br></div><div>optional arguments:</div><div> -h, --help: show this help message and exit</div><div> -a: threat file input contents as an Adjacency Matrix</div><div> -r: reverse order of nodes, from (a,b,w) a -> b will be b -> a</div><div> -d D: line separator to use while parsing</div><div> -t T: number of times to execute</div><div> -i I: number of metaheuristic iterations per execution</div><div> -q Q: fixed quota, use 0 = floor(n/2)+1</div><div> --shape SHAPE: shape functions for binarization - list of implemented shape functions: s2,s2_neg,v2,v4</div><div> --sym: consider graph as symmetric instead of directed</div><div> --folder FOLDER: output folder</div><div> --seed SEED: use custom seed for metaheuristic calcs</div><div> --sum SUM: adds a value to all node labels</div><div> --mh MH: metaheuristic to use - list of implemented metaheuristics: {1: 'Swarm', 2: 'Swarm2', 3: 'Swarm_W', 4:</div><div> 'Swarm_L'}</div><div> --tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria</div><div> --notags: do not use first row as node tags - tags will be calculated</div><div> --prune: nodes with outdegree = 0 and indegree > 0, and with outdegree = 1 and neighbor's outdegree > 0 will be excluded</div><div> --excludenodes EXCLUDENODES: nodes to skip, comma separated</div></div>…”
-
9
Practical rules for summing the series of the Tweedie probability density function with high-precision arithmetic
Published 2019“…With these practical rules, simple summation algorithms provide sufficiently robust results for the calculation of the density function and its definite integrals. …”
-
10
Swarm intelligence algorithms for multi-objective max-min-ISP
Published 2023“…<p>Algorithms implemented on article "<strong>On the max-min influence spread problem: A multi-objective optimization approach</strong>"</p> <p><br></p> <p>usage: Main.py [-h] [-a] [-r] [-d D] [-t T] [-i I] [-q Q] [--shape SHAPE] [--sym] [--folder FOLDER] [--seed SEED] [--spread SPREAD] [--sum SUM] [--mh MH] [--tagsfile TAGSFILE] [--notags] [--prune] [--prunelowdeg] [--excludenodes EXCLUDENODES] [--includeindegzero] [--nodepthcriteria] [--memfile MEMFILE] file</p> <p><br></p> <p>Calculates the best Influence Spread set on a Weighted Graph using PSO</p> <p><br></p> <p>positional arguments:</p> <p>file</p> <p><br></p> <p>options:</p> <p>-h, --help: show this help message and exit</p> <p>-a: read file input contents as an Adjacency Matrix</p> <p>-r: reverse nodes order, reads (b,a,w) instead of (a,b,w)</p> <p>-d D: line separator to use on file parsing</p> <p>-t T: number of times to execute this solver</p> <p>-i I: number of metaheuristic iterations per execution</p> <p>-q Q: fixed quota, use 0 = floor(n/2)+1</p> <p>--shape SHAPE: shape functions for binarization - list of implemented shape functions: s2, s2_neg, v2, v4</p> <p>--sym: consider graph as symmetric instead of directed</p> <p>--folder FOLDER: output folder</p> <p>--seed SEED: use custom seeds for metaheuristic pseudo RNG</p> <p>--spread SPREAD: use specific influence spread model funcion - list of implemented models: LT, IC</p> <p>--sum SUM: adds an extra value to all edge's weight</p> <p>--mh MH: metaheuristic to use - list of implemented metaheuristics: 1 (Swarm3), 3 (Swarm3_W), 4 (Swarm3_L), 5 (Swarm4)</p> <p>--tagsfile TAGSFILE: use first row as node tags instead of using plurality criteria</p> <p>--notags: do not use first row as node tags, instead tags will be calculated</p> <p>--prune: nodes with (1) outdegree = 0 and indegree > 0, and (2) with outdegree = 1 and neighbor's outdegree > 0 will be excluded</p> <p>--prunelowdeg: nodes with low outdegree or degree will be excluded</p> <p>--excludenodes EXCLUDENODES: nodes to skip, must be comma separated</p> <p>--includeindegzero: forces to include nodes with indegree = 0 on all executions</p> <p>--nodepthcriteria: particles will not tie off with spread depth in case of having same fitness and spread</p> <p>--memfile MEMFILE: memory dump of other execution</p>…”
-
11
-
12
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …”
-
13
<b>Opti2Phase</b>: Python scripts for two-stage focal reducer
Published 2025“…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…”
-
14
-
15
-
16
-
17
-
18
-
19
A Python Package for the Localization of Protein Modifications in Mass Spectrometry Data
Published 2022Subjects: -
20