يعرض 1 - 20 نتائج من 4,889 نتيجة بحث عن '(( algorithm state function ) OR ( algorithm a function ))', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    CEC2017 basic functions. حسب Tengfei Ma (597633)

    منشور في 2025
    الموضوعات:
  10. 10
  11. 11
  12. 12

    Completion times for different algorithms. حسب Jianbin Zheng (587000)

    منشور في 2025
    "…In response to the multi-agent system of the H-beam riveting and welding work cell, a recurrent multi-agent proximal policy optimization algorithm (rMAPPO) is proposed to address the multi-agent scheduling problem in the H-beam processing. …"
  13. 13

    The average cumulative reward of algorithms. حسب Jianbin Zheng (587000)

    منشور في 2025
    "…In response to the multi-agent system of the H-beam riveting and welding work cell, a recurrent multi-agent proximal policy optimization algorithm (rMAPPO) is proposed to address the multi-agent scheduling problem in the H-beam processing. …"
  14. 14

    PATH has state-of-the-art performance versus previous binding affinity prediction algorithms. حسب Yuxi Long (11024307)

    منشور في 2025
    "…The benchmarked algorithms include physics-based and deep learning algorithms from the famous AutoDock framework (scoring function of AutoDock4 implemented in the AutoDockFR package [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref068" target="_blank">68</a>,<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref077" target="_blank">77</a>], Vinardo [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref069" target="_blank">69</a>], GNINA [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref070" target="_blank">70</a>]), empirical (AA-Score [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref071" target="_blank">71</a>]), knowledge-based (SMoG2016 [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref072" target="_blank">72</a>]), and deep learning-based scoring functions (OnionNet [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref073" target="_blank">73</a>], PLANET [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref074" target="_blank">74</a>]). …"
  15. 15

    CEC2017 test function test results. حسب Tengfei Ma (597633)

    منشور في 2025
    الموضوعات:
  16. 16
  17. 17
  18. 18

    Simulation settings of rMAPPO algorithm. حسب Jianbin Zheng (587000)

    منشور في 2025
    "…In response to the multi-agent system of the H-beam riveting and welding work cell, a recurrent multi-agent proximal policy optimization algorithm (rMAPPO) is proposed to address the multi-agent scheduling problem in the H-beam processing. …"
  19. 19
  20. 20