Showing 1 - 5 results of 5 for search '(( algorithm t4p function ) OR ((( algorithm python function ) OR ( algorithm b function ))))~', query time: 0.34s Refine Results
  1. 1

    Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model by Marina Diachenko (19739092)

    Published 2025
    “…<p dir="ltr">The <i>zip</i> file contains the code for the functional excitation-inhibition ratio (fE/I) and theta-gamma (θ-γ) phase-amplitude coupling (PAC) analyses described in the paper titled "<b>Hippocampal and cortical activity reflect early </b><b>hyperexcitability</b><b> in an Alzheimer's mouse model</b>" submitted to <i>Brain Communications</i> in April 2025.…”
  2. 2

    <b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b> by Shubham Pawar (22471285)

    Published 2025
    “…</p><p dir="ltr"><b>Reference:</b> <code>find_merge_target_connectivity</code> function in <code>agg_clustring_final.py</code></p><p dir="ltr">Shows:</p><ul><li>(a) Initial hierarchy from standard agglomerative clustering</li><li>(b) Adjusted hierarchy after post-processing refinement</li></ul><h4>Figure 6: Multi-Stage Clustering Workflow</h4><p dir="ltr">Complete workflow of the clustering methodology.…”
  3. 3

    MCCN Case Study 2 - Spatial projection via modelled data by Donald Hobern (21435904)

    Published 2025
    “…This repository contains Jupyter notebooks to demonstrate the functionality of the MCCN data cube components.</p><p dir="ltr">The dataset contains input files for the case study (source_data), RO-Crate metadata (ro-crate-metadata.json), results from the case study (results), and Jupyter Notebook (MCCN-CASE 2.ipynb)</p><h4><b>Research Activity Identifier (RAiD)</b></h4><p dir="ltr">RAiD: https://doi.org/10.26292/8679d473</p><h4><b>Case Studies</b></h4><p dir="ltr">This repository contains code and sample data for the following case studies. …”
  4. 4

    COI reference sequences from BOLD DB by John Sundh (12853901)

    Published 2023
    “…Sorry for the inconvenience.</b></p><h4><b>Methods</b></h4><p dir="ltr">The code used to generate this dataset consists of a snakemake workflow wrapped into a python package that can be installed with <a href="https://docs.conda.io/en/latest/miniconda.html" target="_blank">conda </a>(`conda install -c bioconda coidb`). …”
  5. 5

    Barro Colorado Island 50-ha plot aerial photogrammetry orthomosaics and digital surface models for 2018-2023: Globally and locally aligned time series. by Vicente Vasquez (13550731)

    Published 2023
    “…For a comprehensive understanding of the alignment methodology, please refer to the GitHub repository housing the complete code.</p><p dir="ltr"><b>Metadata</b>:</p><p dir="ltr">All aligned orthomosaics have the following raster metadata:</p><p dir="ltr">• N-S extension: 12696 pixels</p><p dir="ltr">• E-W extension: 23424 pixels</p><p dir="ltr">• Bands: 4</p><p dir="ltr">• Data type: Unsigned integer 8 bit</p><p dir="ltr">• Cell size x: 0.04506838077213615 m</p><p dir="ltr">• Cell size y: 0.04506838077213615 m</p><p dir="ltr">• Format: GeoTIFF</p><p dir="ltr">• Coordinate reference system: UTM 17 N, EPSG:32617</p><p dir="ltr">• No data value: None</p><p dir="ltr">• Bottom left corner coordinate: 625753.8483345169, 1012295.5974669948</p><p dir="ltr">Drone: DJI Phantom 4 Pro</p><p dir="ltr">Drone data collection: Milton Garcia, Melvin Hernandez, and David DeFilippis</p><p dir="ltr">Sensor: FC6310</p><p dir="ltr">Sensor resolution: 5472 x 3648"</p><p dir="ltr"><b>File naming scheme</b></p><p dir="ltr">We provide with a zip file for each of the timeseries following the file naming convention: MacroSite_plot_timeseries_type_aligment (BCI_50ha_timeseries_global_alignment) Inside each timeseries we can find the raster files following the convention: Macrosite_plot_year_month_day_typeAligment</p><p dir="ltr"><b>Author contributions</b></p><p dir="ltr">VV wrote the code for standardized processing and alignment and processed the drone imagery. …”