Search alternatives:
using function » using functional (Expand Search), sine function (Expand Search), waning function (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
both function » body function (Expand Search), growth function (Expand Search), beach function (Expand Search)
using function » using functional (Expand Search), sine function (Expand Search), waning function (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
both function » body function (Expand Search), growth function (Expand Search), beach function (Expand Search)
-
1
Efficient Algorithms for GPU Accelerated Evaluation of the DFT Exchange-Correlation Functional
Published 2025“…In contrast, for smaller and denser systems such as diamond nanoparticles, especially if employing large basis sets, algorithms that use the underlying molecular orbital coefficients offer superior performance, despite their higher formal scaling. …”
-
2
EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit
Published 2025“…Functional groups are widely used in organic chemistry, because they provide a rationale to analyze physicochemical and reactivity properties. …”
-
3
-
4
The pseudocode for the NAFPSO algorithm.
Published 2025“…A scheduling optimization model based on the particle swarm optimization (PSO) algorithm is proposed. In view of the high-dimensional complexity and local optimal problems, the neighborhood adaptive constrained fractional particle swarm optimization (NACFPSO) algorithm is used to solve it. …”
-
5
PSO algorithm flowchart.
Published 2025“…A scheduling optimization model based on the particle swarm optimization (PSO) algorithm is proposed. In view of the high-dimensional complexity and local optimal problems, the neighborhood adaptive constrained fractional particle swarm optimization (NACFPSO) algorithm is used to solve it. …”
-
6
-
7
Completion times for different algorithms.
Published 2025“…This paper first analyzes the H-beam processing flow and appropriately simplifies it, develops a reinforcement learning environment for multi-agent scheduling, and applies the rMAPPO algorithm to make scheduling decisions. The effectiveness of the proposed method is then verified on both the physical work cell for riveting and welding and its digital twin platform, and it is compared with other baseline multi-agent reinforcement learning methods (MAPPO, MADDPG, and MASAC). …”
-
8
The average cumulative reward of algorithms.
Published 2025“…This paper first analyzes the H-beam processing flow and appropriately simplifies it, develops a reinforcement learning environment for multi-agent scheduling, and applies the rMAPPO algorithm to make scheduling decisions. The effectiveness of the proposed method is then verified on both the physical work cell for riveting and welding and its digital twin platform, and it is compared with other baseline multi-agent reinforcement learning methods (MAPPO, MADDPG, and MASAC). …”
-
9
Study proposed algorithm.
Published 2025“…The index of microvascular resistance (IMR) is a specific physiological parameter used to assess microvascular function. Invasive coronary assessment has been shown to be both feasible and safe. …”
-
10
Gillespie algorithm simulation parameters.
Published 2024“…Both the ensemble and stochastic models presented in this work have been verified using Monte Carlo molecular dynamic simulations that utilize the Gillespie algorithm. …”
-
11
Scheduling time of five algorithms.
Published 2025“…A scheduling optimization model based on the particle swarm optimization (PSO) algorithm is proposed. In view of the high-dimensional complexity and local optimal problems, the neighborhood adaptive constrained fractional particle swarm optimization (NACFPSO) algorithm is used to solve it. …”
-
12
Convergence speed of five algorithms.
Published 2025“…A scheduling optimization model based on the particle swarm optimization (PSO) algorithm is proposed. In view of the high-dimensional complexity and local optimal problems, the neighborhood adaptive constrained fractional particle swarm optimization (NACFPSO) algorithm is used to solve it. …”
-
13
-
14
-
15
-
16
Simulation settings of rMAPPO algorithm.
Published 2025“…This paper first analyzes the H-beam processing flow and appropriately simplifies it, develops a reinforcement learning environment for multi-agent scheduling, and applies the rMAPPO algorithm to make scheduling decisions. The effectiveness of the proposed method is then verified on both the physical work cell for riveting and welding and its digital twin platform, and it is compared with other baseline multi-agent reinforcement learning methods (MAPPO, MADDPG, and MASAC). …”
-
17
-
18
-
19
-
20