بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث)
python function » protein function (توسيع البحث)
where function » sphere function (توسيع البحث), gene function (توسيع البحث), wave function (توسيع البحث)
algorithm both » algorithm blood (توسيع البحث), algorithm b (توسيع البحث), algorithm etc (توسيع البحث)
both function » body function (توسيع البحث), growth function (توسيع البحث), beach function (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث)
python function » protein function (توسيع البحث)
where function » sphere function (توسيع البحث), gene function (توسيع البحث), wave function (توسيع البحث)
algorithm both » algorithm blood (توسيع البحث), algorithm b (توسيع البحث), algorithm etc (توسيع البحث)
both function » body function (توسيع البحث), growth function (توسيع البحث), beach function (توسيع البحث)
-
1
-
2
Comparison of scores obtained by our interpenetration and scoring algorithm (ISA) and ROSETTA for a subset of structures.
منشور في 2023"…However, our algorithm was 1000 times faster than pyROSETTA (both algorithms have been parallelized on a per-structure basis using the Python package joblib [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1010531#pcbi.1010531.ref069" target="_blank">69</a>]).…"
-
3
-
4
Spatiotemporal Soil Erosion Dataset for the Yarlung Tsangpo River Basin (1990–2100)
منشور في 2025"…Additionally, a Genetic Algorithm (GA) was applied in each iteration to optimize the hyperparameters of the XGBoost model, which is crucial for enhancing both the efficiency and robustness of the model (Zhong and Liu, 2024; Zou et al., 2024). …"
-
5
Landscape17
منشور في 2025"…This dataset features global potential energy surface representations generated using the energy landscape framework and includes regions crucial for accurately reproducing both thermodynamic and kinetic properties. For each of the selected six molecules (ethanol, malonaldehyde, paracetamol, salicylic acid, azobenzene, and aspirin) we provide all the minima and transition states, along with configurations from the two approximate steepest-descent paths connecting each transition state to the corresponding minima, computed using hybrid-level density functional theory. …"
-
6
Code
منشور في 2025"…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"
-
7
Core data
منشور في 2025"…We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"