بدائل البحث:
algorithm which » algorithm where (توسيع البحث), algorithm within (توسيع البحث)
which function » beach function (توسيع البحث)
algorithm cl » algorithm co (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
algorithm i » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
cl function » l function (توسيع البحث), cell function (توسيع البحث), cep function (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
algorithm which » algorithm where (توسيع البحث), algorithm within (توسيع البحث)
which function » beach function (توسيع البحث)
algorithm cl » algorithm co (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
algorithm i » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
cl function » l function (توسيع البحث), cell function (توسيع البحث), cep function (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
-
1
-
2
The ALO algorithm optimization flowchart.
منشور في 2024"…The average running time of the proposed algorithm in Sphere function and Griebank function was 2.67s and 1.64s, respectively. …"
-
3
The IALO algorithm solution flowchart.
منشور في 2024"…The average running time of the proposed algorithm in Sphere function and Griebank function was 2.67s and 1.64s, respectively. …"
-
4
-
5
Efficient algorithms to discover alterations with complementary functional association in cancer
منشور في 2019"…We provide analytic evidence of the effectiveness of UNCOVER in finding high-quality solutions and show experimentally that UNCOVER finds sets of alterations significantly associated with functional targets in a variety of scenarios. In particular, we show that our algorithms find sets which are better than the ones obtained by the state-of-the-art method, even when sets are evaluated using the statistical score employed by the latter. …"
-
6
Hyperparameter settings of the algorithm 1.
منشور في 2024"…Therefore, this paper presents a novel adaptive control structure for the Twin Delayed Deep Deterministic Policy Gradient algorithm, which is based on a reference trajectory model (TD3-RTM). …"
-
7
-
8
23 benchmark functions.
منشور في 2025"…To enhance the algorithm’s global optimization capabilities and stability, an enhanced CTCM (CTCMKT) is proposed, which integrates a joint strategy of Kent chaotic mapping and <i>t</i>- distribution mutation. …"
-
9
Continuous Probability Distributions generated by the PIPE Algorithm
منشور في 2022"…The PIPE algorithm can generate several candidate functions to fit the empirical distribution of data. …"
-
10
-
11
-
12
-
13
ANOVA tests for Benchmark functions.
منشور في 2025"…To enhance the algorithm’s global optimization capabilities and stability, an enhanced CTCM (CTCMKT) is proposed, which integrates a joint strategy of Kent chaotic mapping and <i>t</i>- distribution mutation. …"
-
14
The Wilcoxon results for Benchmark functions.
منشور في 2025"…To enhance the algorithm’s global optimization capabilities and stability, an enhanced CTCM (CTCMKT) is proposed, which integrates a joint strategy of Kent chaotic mapping and <i>t</i>- distribution mutation. …"
-
15
Convergence graphs of Benchmark functions.
منشور في 2025"…To enhance the algorithm’s global optimization capabilities and stability, an enhanced CTCM (CTCMKT) is proposed, which integrates a joint strategy of Kent chaotic mapping and <i>t</i>- distribution mutation. …"
-
16
CEC2019 benchmark functions.
منشور في 2023"…Secondly, the nonlinear convergence factor is constructed to replace the original random factor <i>c</i><sub>1</sub> to coordinate the algorithm’s local exploitation and global exploration performance, which effectively improves the ability of the algorithm to escape extreme values and fast convergence. …"
-
17
-
18
-
19
-
20