Search alternatives:
within function » fibrin function (Expand Search), python function (Expand Search), protein function (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
both function » body function (Expand Search), growth function (Expand Search), beach function (Expand Search)
algorithm cl » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
cl function » l function (Expand Search), cell function (Expand Search), cep function (Expand Search)
within function » fibrin function (Expand Search), python function (Expand Search), protein function (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
both function » body function (Expand Search), growth function (Expand Search), beach function (Expand Search)
algorithm cl » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
cl function » l function (Expand Search), cell function (Expand Search), cep function (Expand Search)
-
1
Comparison of different algorithms.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
2
Study proposed algorithm.
Published 2025“…The index of microvascular resistance (IMR) is a specific physiological parameter used to assess microvascular function. Invasive coronary assessment has been shown to be both feasible and safe. …”
-
3
Multi-algorithm comparison figure.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
4
-
5
Table 1_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.xlsx
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
6
Image 1_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
7
Image 4_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
8
Image 5_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
9
Image 3_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
10
Image 2_Comprehensive analysis of anoikis-related gene signature in ulcerative colitis using machine learning algorithms.tiff
Published 2025“…Key anoikis-DEGs in UC were identified using three machine learning algorithms, including least absolute shrinkage and selection operator (LASSO) Cox regression, random forest (RF), and support vector machine (SVM). …”
-
11
-
12
-
13
Overall process planning.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
14
Model intrinsic parameter flow.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
15
A comparison of whether to add a penalty.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
16
The interleaved processes.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
17
Final optimization results.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
18
Vehicle-related parameters.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
19
The comparison in gantt result.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”
-
20
Pseudocode of IHWGWO.
Published 2025“…A sophisticated optimization model has been developed to simulate the optimal operation of machinery, aiming to maximize equipment utilization efficiency while addressing the challenges posed by worker fatigue. An innovative algorithm, the improved hybrid gray wolf and whale algorithm fused with a penalty function for construction machinery optimization (IHWGWO), is introduced, incorporating a penalty function to handle constraints effectively. …”