بدائل البحث:
within function » fibrin function (توسيع البحث), python function (توسيع البحث), protein function (توسيع البحث)
algorithm its » algorithm i (توسيع البحث), algorithm etc (توسيع البحث), algorithm iqa (توسيع البحث)
its function » i function (توسيع البحث), loss function (توسيع البحث), cost function (توسيع البحث)
algorithm 1 » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث), algorithm 8217 (توسيع البحث)
1 function » _ function (توسيع البحث), a function (توسيع البحث)
within function » fibrin function (توسيع البحث), python function (توسيع البحث), protein function (توسيع البحث)
algorithm its » algorithm i (توسيع البحث), algorithm etc (توسيع البحث), algorithm iqa (توسيع البحث)
its function » i function (توسيع البحث), loss function (توسيع البحث), cost function (توسيع البحث)
algorithm 1 » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث), algorithm 8217 (توسيع البحث)
1 function » _ function (توسيع البحث), a function (توسيع البحث)
-
1
Route for bays29 output by ABSQL algorithm.
منشور في 2023"…DSRABSQL builds upon the Q-learning (QL) algorithm. Considering its problems of slow convergence and low accuracy, four strategies within the QL framework are designed first: the weighting function-based reward matrix, the power function-based initial Q-table, a self-adaptive <i>ε-beam</i> search strategy, and a new Q-value update formula. …"
-
2
-
3
-
4
Improved Ant Colony Algorithm
منشور في 2024"…To achieve this, we integrate the hyperbolic tangent function, fine-tuning the ACO algorithm's behavior to adaptively adjust its search strategy across iterations.(2) Recognizing the tendency of heuristic algorithms to converge prematurely into local optima, we devise a max-min ant colony strategy. …"
-
5
Comparative analysis of algorithms.
منشور في 2024"…Notably, the LIRU algorithm registers a 5% increment in one-hop hit ratio relative to the LFU algorithm, a 66% enhancement over the LRU algorithm, and a 14% elevation in system hit ratio against the LRU algorithm. …"
-
6
-
7
Multi-scale detection of hierarchical community architecture in structural and functional brain networks
منشور في 2019"…In their simplest application, community detection algorithms are agnostic to the presence of community hierarchies: clusters embedded within clusters of other clusters. …"
-
8
-
9
-
10
-
11
Multimodal reference functions.
منشور في 2025"…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
12
Mean convergence graphs of the evolution in the performance function and its terms through generations in thirty executions of each algorithm.
منشور في 2025"…<p>Mean convergence graphs of the evolution in the performance function and its terms through generations in thirty executions of each algorithm.…"
-
13
System pharmacology-based determination of the functional components and mechanisms in chronic heart failure treatment: an example of Zhenwu decoction
منشور في 2023"…Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. …"
-
14
-
15
-
16
The convergence curves of the test functions.
منشور في 2025"…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
17
Single-peaked reference functions.
منشور في 2025"…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
18
-
19
-
20