Search alternatives:
algorithm python » algorithms within (Expand Search), algorithm both (Expand Search)
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
algorithm a » algorithms a (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
a function » _ function (Expand Search)
algorithm python » algorithms within (Expand Search), algorithm both (Expand Search)
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
algorithm a » algorithms a (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
a function » _ function (Expand Search)
-
601
-
602
-
603
-
604
-
605
-
606
-
607
-value on 23 benchmark functions (dim = 30).
Published 2025“…<div><p>Metaheuristic optimization algorithms often face challenges such as complex modeling, limited adaptability, and a tendency to get trapped in local optima when solving complex optimization problems. …”
-
608
Flow chart diagram of blind quantum algorithm.
Published 2024“…However, in the pursuit of complexity, vulnerabilities may be introduced inadvertently, posing a substantial danger to software security. Our study addresses five major components of the quantum method to overcome these challenges: lattice-based cryptography, fully homomorphic algorithms, quantum key distribution, quantum hash functions, and blind quantum algorithms. …”
-
609
A robust privacy-preserving online monitoring algorithm for disease surveillance
Published 2025“…Further, we introduce an adaptive estimation method and a weighting function to reduce the sensitivity loss in the monitoring and robustness loss in the private monitoring algorithm. …”
-
610
-
611
-
612
-
613
Rosenbrock function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …”
-
614
Rosenbrock function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …”
-
615
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …”
-
616
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …”
-
617
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …”
-
618
Rastrigin function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …”
-
619
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …”
-
620
Levy function losses for .
Published 2025“…This approach bridges the gap between model accuracy and optimization efficiency, offering a practical solution for optimizing non-differentiable machine learning models that can be extended to other tree-based ensemble algorithms. …”