Search alternatives:
algorithm python » algorithms within (Expand Search), algorithm both (Expand Search)
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
algorithm etc » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
etc function » spc function (Expand Search), fc function (Expand Search), npc function (Expand Search)
algorithm python » algorithms within (Expand Search), algorithm both (Expand Search)
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
algorithm etc » algorithm _ (Expand Search), algorithm b (Expand Search), algorithm a (Expand Search)
etc function » spc function (Expand Search), fc function (Expand Search), npc function (Expand Search)
-
641
Table 3_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
Published 2025“…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
-
642
Data Sheet 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.docx
Published 2025“…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
-
643
Table 5_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
Published 2025“…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
-
644
Table 4_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
Published 2025“…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
-
645
Table 2_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
Published 2025“…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
-
646
Table 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
Published 2025“…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
-
647
CIAHS-Data.xls
Published 2025“…This method identifies inherent natural grouping points within the data through the Jenks optimization algorithm, maximizing between-class differences while minimizing within-class differences37. …”
-
648
Table 1_Development of a prognostic prediction model and visualization system for autologous costal cartilage rhinoplasty: an automated machine learning approach.docx
Published 2025“…We proposed an improved metaheuristic algorithm (INPDOA) for AutoML optimization, validated against 12 CEC2022 benchmark functions. …”
-
649
Uncertainty and Novelty in Machine Learning
Published 2024“…This demonstrates identifying information in finite steps to asymptotic statistics and PAC-learning, where we recover identification within finite observations at the cost of uncertainty and error.…”
-
650
MCCN Case Study 2 - Spatial projection via modelled data
Published 2025“…This study demonstrates: 1) Description of spatial assets using STAC, 2) Loading heterogeneous data sources into a cube, 3) Spatial projection in xarray using different algorithms offered by the <a href="https://pypi.org/project/PyKrige/" rel="nofollow" target="_blank">pykrige</a> and <a href="https://pypi.org/project/rioxarray/" rel="nofollow" target="_blank">rioxarray</a> packages.…”
-
651
Data Sheet 1_Machine learning models integrating intracranial artery calcification to predict outcomes of mechanical thrombectomy.pdf
Published 2025“…Eleven ML algorithms were trained and validated using Python, and external validation and performance evaluations were conducted. …”
-
652
Data Sheet 1_Unsupervised method for representation transfer from one brain to another.docx
Published 2024“…<p>Although the anatomical arrangement of brain regions and the functional structures within them are similar across individuals, the representation of neural information, such as recorded brain activity, varies among individuals owing to various factors. …”
-
653
Table 3_Constructing a neutrophil extracellular trap model based on machine learning to predict clinical outcomes and immune therapy responses in oral squamous cell carcinoma.xlsx
Published 2025“…Six machine learning algorithms were employed for model training, with the best model selected based on 1-year, 3-year, and 5-year AUC values. …”
-
654
Image 2_Single-cell sequencing reveals the role of aggrephagy-related patterns in tumor microenvironment, prognosis and immunotherapy in endometrial cancer.jpeg
Published 2025“…However, aggrephagy functions within the tumor microenvironment (TME) in endometrial cancer (EC) remain to be elucidated.…”
-
655
Image 1_Single-cell sequencing reveals the role of aggrephagy-related patterns in tumor microenvironment, prognosis and immunotherapy in endometrial cancer.jpeg
Published 2025“…However, aggrephagy functions within the tumor microenvironment (TME) in endometrial cancer (EC) remain to be elucidated.…”
-
656
Image 3_Single-cell sequencing reveals the role of aggrephagy-related patterns in tumor microenvironment, prognosis and immunotherapy in endometrial cancer.jpeg
Published 2025“…However, aggrephagy functions within the tumor microenvironment (TME) in endometrial cancer (EC) remain to be elucidated.…”
-
657
Table 1_Constructing a neutrophil extracellular trap model based on machine learning to predict clinical outcomes and immune therapy responses in oral squamous cell carcinoma.xlsx
Published 2025“…Six machine learning algorithms were employed for model training, with the best model selected based on 1-year, 3-year, and 5-year AUC values. …”
-
658
Table 1_Single-cell sequencing reveals the role of aggrephagy-related patterns in tumor microenvironment, prognosis and immunotherapy in endometrial cancer.docx
Published 2025“…However, aggrephagy functions within the tumor microenvironment (TME) in endometrial cancer (EC) remain to be elucidated.…”
-
659
Image 4_Single-cell sequencing reveals the role of aggrephagy-related patterns in tumor microenvironment, prognosis and immunotherapy in endometrial cancer.jpeg
Published 2025“…However, aggrephagy functions within the tumor microenvironment (TME) in endometrial cancer (EC) remain to be elucidated.…”
-
660
Image 1_Constructing a neutrophil extracellular trap model based on machine learning to predict clinical outcomes and immune therapy responses in oral squamous cell carcinoma.tif
Published 2025“…Six machine learning algorithms were employed for model training, with the best model selected based on 1-year, 3-year, and 5-year AUC values. …”