بدائل البحث:
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm fc » algorithm etc (توسيع البحث), algorithm pca (توسيع البحث), algorithms mc (توسيع البحث)
fc function » spc function (توسيع البحث), _ function (توسيع البحث), a function (توسيع البحث)
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm fc » algorithm etc (توسيع البحث), algorithm pca (توسيع البحث), algorithms mc (توسيع البحث)
fc function » spc function (توسيع البحث), _ function (توسيع البحث), a function (توسيع البحث)
-
601
Image 9_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
منشور في 2025"…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …"
-
602
Image 6_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
منشور في 2025"…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …"
-
603
Image 7_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
منشور في 2025"…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …"
-
604
Image 5_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg
منشور في 2025"…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …"
-
605
Data_Sheet_3_Potential diagnostic markers and therapeutic targets for non-alcoholic fatty liver disease and ulcerative colitis based on bioinformatics analysis and machine learning...
منشور في 2024"…Subsequently, the Cytohubba algorithm within Cytoscape was used to identify central genes. …"
-
606
Data_Sheet_4_Potential diagnostic markers and therapeutic targets for non-alcoholic fatty liver disease and ulcerative colitis based on bioinformatics analysis and machine learning...
منشور في 2024"…Subsequently, the Cytohubba algorithm within Cytoscape was used to identify central genes. …"
-
607
Data_Sheet_2_Potential diagnostic markers and therapeutic targets for non-alcoholic fatty liver disease and ulcerative colitis based on bioinformatics analysis and machine learning...
منشور في 2024"…Subsequently, the Cytohubba algorithm within Cytoscape was used to identify central genes. …"
-
608
Data_Sheet_1_Potential diagnostic markers and therapeutic targets for non-alcoholic fatty liver disease and ulcerative colitis based on bioinformatics analysis and machine learning...
منشور في 2024"…Subsequently, the Cytohubba algorithm within Cytoscape was used to identify central genes. …"
-
609
Data Sheet 2_Characterization of the salivary microbiome in healthy individuals under fatigue status.docx
منشور في 2025"…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…"
-
610
Table 3_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
منشور في 2025"…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…"
-
611
Data Sheet 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.docx
منشور في 2025"…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…"
-
612
Table 5_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
منشور في 2025"…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…"
-
613
Table 4_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
منشور في 2025"…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…"
-
614
Table 2_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
منشور في 2025"…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…"
-
615
Table 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx
منشور في 2025"…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…"
-
616
CIAHS-Data.xls
منشور في 2025"…This method identifies inherent natural grouping points within the data through the Jenks optimization algorithm, maximizing between-class differences while minimizing within-class differences37. …"
-
617
Table 1_Development of a prognostic prediction model and visualization system for autologous costal cartilage rhinoplasty: an automated machine learning approach.docx
منشور في 2025"…We proposed an improved metaheuristic algorithm (INPDOA) for AutoML optimization, validated against 12 CEC2022 benchmark functions. …"
-
618
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
منشور في 2025"…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…"
-
619
Uncertainty and Novelty in Machine Learning
منشور في 2024"…This demonstrates identifying information in finite steps to asymptotic statistics and PAC-learning, where we recover identification within finite observations at the cost of uncertainty and error.…"
-
620
Table 1_Mitochondrial non-coding RNAs as novel biomarkers and therapeutic targets in lung cancer integration of traditional bioinformatics and machine learning approaches.xlsx
منشور في 2025"…</p>Methods<p>We analyzed TCGA-LUAD/LUSC miRNA-seq data to identify mtRNAs via mitochondrial genome alignment. Machine learning algorithms (SVM, Random Forest, Logistic Regression) classified samples using differentially expressed mtRNAs (P < 0.01, |log2FC| > 1). …"