يعرض 21 - 40 نتائج من 3,694 نتيجة بحث عن '(( algorithm within function ) OR ((( algorithm python function ) OR ( algorithm i function ))))', وقت الاستعلام: 0.66s تنقيح النتائج
  1. 21
  2. 22

    Multimodal reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  3. 23
  4. 24
  5. 25
  6. 26
  7. 27
  8. 28
  9. 29

    The convergence curves of the test functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  10. 30

    Single-peaked reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  11. 31
  12. 32
  13. 33

    Image 4_Construction of a right ventricular function assessment model in patients undergoing invasive mechanical ventilation based on VExUS grading and the classification and regre... حسب Jun Gao (203098)

    منشور في 2025
    "…Objective<p>Investigate the correlation between right ventricular function ultrasound indicators and the Venous Excess Ultrasound (VExUS) grading system in patients undergoing invasive mechanical ventilation (IMV), and develop a right ventricular function assessment model using VExUS grading and the Classification and Regression Tree (CART) algorithm.…"
  14. 34

    Image 3_Construction of a right ventricular function assessment model in patients undergoing invasive mechanical ventilation based on VExUS grading and the classification and regre... حسب Jun Gao (203098)

    منشور في 2025
    "…Objective<p>Investigate the correlation between right ventricular function ultrasound indicators and the Venous Excess Ultrasound (VExUS) grading system in patients undergoing invasive mechanical ventilation (IMV), and develop a right ventricular function assessment model using VExUS grading and the Classification and Regression Tree (CART) algorithm.…"
  15. 35

    Image 2_Construction of a right ventricular function assessment model in patients undergoing invasive mechanical ventilation based on VExUS grading and the classification and regre... حسب Jun Gao (203098)

    منشور في 2025
    "…Objective<p>Investigate the correlation between right ventricular function ultrasound indicators and the Venous Excess Ultrasound (VExUS) grading system in patients undergoing invasive mechanical ventilation (IMV), and develop a right ventricular function assessment model using VExUS grading and the Classification and Regression Tree (CART) algorithm.…"
  16. 36
  17. 37

    Test results of multimodal benchmark functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  18. 38

    Fixed-dimensional multimodal reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  19. 39

    Test results of multimodal benchmark functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  20. 40