Showing 181 - 200 results of 1,187 for search '(( algorithm within function ) OR ((( algorithm python function ) OR ( algorithm link function ))))', query time: 0.49s Refine Results
  1. 181

    Table 4_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  2. 182

    Table 1_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  3. 183

    Image 1_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.tif by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  4. 184

    Table 3_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  5. 185

    Table 7_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  6. 186

    Table 10_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  7. 187

    Image 2_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.tif by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  8. 188

    Table 5_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  9. 189

    Image 3_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.tif by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  10. 190

    Table 2_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  11. 191

    Table 6_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx by Peng Zhu (277243)

    Published 2025
    “…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …”
  12. 192
  13. 193
  14. 194
  15. 195

    Core genes were selected through PPI analysis based on three algorithms. by Dong-Hee Han (140305)

    Published 2024
    “…<p>Among 46 DEGs whose expression significantly changed in A549 and BEAS-2B cell lines, the core genes were selected using three algorithms: MCC, MNC, and DEGREE. <b>(A)</b> The top 10 genes were prioritized using MCC analysis, which identifies the largest clique within the PPI network and selects the central proteins within the clique. …”
  16. 196
  17. 197
  18. 198
  19. 199
  20. 200