Showing 581 - 600 results of 749 for search '(( algorithm within function ) OR ((( algorithm python function ) OR ( algorithm npc function ))))', query time: 0.41s Refine Results
  1. 581

    Image 9_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  2. 582

    Image 6_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  3. 583

    Image 7_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  4. 584

    Image 5_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  5. 585
  6. 586
  7. 587
  8. 588
  9. 589

    Data Sheet 2_Characterization of the salivary microbiome in healthy individuals under fatigue status.docx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  10. 590

    Table 3_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  11. 591

    Data Sheet 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.docx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  12. 592

    Table 5_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  13. 593

    Table 4_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  14. 594

    Table 2_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  15. 595

    Table 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  16. 596

    CIAHS-Data.xls by Yingchang Li (22195585)

    Published 2025
    “…This method identifies inherent natural grouping points within the data through the Jenks optimization algorithm, maximizing between-class differences while minimizing within-class differences37. …”
  17. 597

    Table 1_Development of a prognostic prediction model and visualization system for autologous costal cartilage rhinoplasty: an automated machine learning approach.docx by Aihemaitijiang Niyazi (22355542)

    Published 2025
    “…We proposed an improved metaheuristic algorithm (INPDOA) for AutoML optimization, validated against 12 CEC2022 benchmark functions. …”
  18. 598

    <b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b> by Shubham Pawar (22471285)

    Published 2025
    “…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…”
  19. 599

    Uncertainty and Novelty in Machine Learning by Derek Scott Prijatelj (20364288)

    Published 2024
    “…This demonstrates identifying information in finite steps to asymptotic statistics and PAC-learning, where we recover identification within finite observations at the cost of uncertainty and error.…”
  20. 600

    MCCN Case Study 2 - Spatial projection via modelled data by Donald Hobern (21435904)

    Published 2025
    “…This study demonstrates: 1) Description of spatial assets using STAC, 2) Loading heterogeneous data sources into a cube, 3) Spatial projection in xarray using different algorithms offered by the <a href="https://pypi.org/project/PyKrige/" rel="nofollow" target="_blank">pykrige</a> and <a href="https://pypi.org/project/rioxarray/" rel="nofollow" target="_blank">rioxarray</a> packages.…”