Showing 661 - 680 results of 749 for search '(( algorithm within function ) OR ((( algorithm python function ) OR ( algorithm npc function ))))', query time: 0.32s Refine Results
  1. 661

    Table 1_Integrative multi-omics analysis identifies a PTM-related immune signature and IRF9 as a driver in ccRCC.docx by Zixiang Li (7014416)

    Published 2025
    “…Experimental data pinpoint IRF9 as a functional driver and potential therapeutic target within this PTM-immunity axis.…”
  2. 662

    Table 7_Decoding immune-metabolic crosstalk in ARDS: a transcriptomic exploration of biomarkers, cellular dynamics, and therapeutic pathways.xlsx by Ting Wu (106368)

    Published 2025
    “…</p>Results<p>Through machine learning algorithms, RPL14, SMARCD3, and TCN1 were identified as candidate biomarkers. …”
  3. 663

    Supplementary file 1_Integrative multi-omics analysis identifies a PTM-related immune signature and IRF9 as a driver in ccRCC.docx by Zixiang Li (7014416)

    Published 2025
    “…Experimental data pinpoint IRF9 as a functional driver and potential therapeutic target within this PTM-immunity axis.…”
  4. 664

    Table 2_Integrative multi-omics analysis identifies a PTM-related immune signature and IRF9 as a driver in ccRCC.docx by Zixiang Li (7014416)

    Published 2025
    “…Experimental data pinpoint IRF9 as a functional driver and potential therapeutic target within this PTM-immunity axis.…”
  5. 665

    Table 10_Decoding immune-metabolic crosstalk in ARDS: a transcriptomic exploration of biomarkers, cellular dynamics, and therapeutic pathways.xlsx by Ting Wu (106368)

    Published 2025
    “…</p>Results<p>Through machine learning algorithms, RPL14, SMARCD3, and TCN1 were identified as candidate biomarkers. …”
  6. 666

    Table 4_Decoding immune-metabolic crosstalk in ARDS: a transcriptomic exploration of biomarkers, cellular dynamics, and therapeutic pathways.xlsx by Ting Wu (106368)

    Published 2025
    “…</p>Results<p>Through machine learning algorithms, RPL14, SMARCD3, and TCN1 were identified as candidate biomarkers. …”
  7. 667

    Table2_Deciphering the role of lipid metabolism-related genes in Alzheimer’s disease: a machine learning approach integrating Traditional Chinese Medicine.xlsx by KeShangJing Wu (19931535)

    Published 2024
    “…To this end, advanced machine-learning algorithms and data derived from the Gene Expression Omnibus (GEO) database have been employed to facilitate the identification of these biomarkers.…”
  8. 668

    Table3_Deciphering the role of lipid metabolism-related genes in Alzheimer’s disease: a machine learning approach integrating Traditional Chinese Medicine.xlsx by KeShangJing Wu (19931535)

    Published 2024
    “…To this end, advanced machine-learning algorithms and data derived from the Gene Expression Omnibus (GEO) database have been employed to facilitate the identification of these biomarkers.…”
  9. 669

    Table4_Deciphering the role of lipid metabolism-related genes in Alzheimer’s disease: a machine learning approach integrating Traditional Chinese Medicine.xlsx by KeShangJing Wu (19931535)

    Published 2024
    “…To this end, advanced machine-learning algorithms and data derived from the Gene Expression Omnibus (GEO) database have been employed to facilitate the identification of these biomarkers.…”
  10. 670

    Table1_Deciphering the role of lipid metabolism-related genes in Alzheimer’s disease: a machine learning approach integrating Traditional Chinese Medicine.xlsx by KeShangJing Wu (19931535)

    Published 2024
    “…To this end, advanced machine-learning algorithms and data derived from the Gene Expression Omnibus (GEO) database have been employed to facilitate the identification of these biomarkers.…”
  11. 671

    Table6_Deciphering the role of lipid metabolism-related genes in Alzheimer’s disease: a machine learning approach integrating Traditional Chinese Medicine.xlsx by KeShangJing Wu (19931535)

    Published 2024
    “…To this end, advanced machine-learning algorithms and data derived from the Gene Expression Omnibus (GEO) database have been employed to facilitate the identification of these biomarkers.…”
  12. 672

    Table5_Deciphering the role of lipid metabolism-related genes in Alzheimer’s disease: a machine learning approach integrating Traditional Chinese Medicine.xlsx by KeShangJing Wu (19931535)

    Published 2024
    “…To this end, advanced machine-learning algorithms and data derived from the Gene Expression Omnibus (GEO) database have been employed to facilitate the identification of these biomarkers.…”
  13. 673

    Assessing the risk of acute kidney injury associated with a four-drug regimen for heart failure: a ten-year real-world pharmacovigilance analysis based on FAERS events by Sen Lin (182597)

    Published 2025
    “…Disproportionality analysis and subgroup analysis were performed using four algorithms. Time-to-onset (TTO) analysis was used to assess the temporal risk patterns of ADE occurrence. …”
  14. 674

    <b>Leveraging protected areas for dual goals of biodiversity conservation and zoonotic</b> <b>risk reduction</b> by Li Yang (13558573)

    Published 2025
    “…Each approach was run using both the Additive Benefit Function (ABF) and Core-Area Zonation (CAZ) algorithms.…”
  15. 675

    Identification of potential circadian rhythm-related hub genes and immune infiltration in preeclampsia through bioinformatics analysis by Juan Tang (437969)

    Published 2025
    “…Molecular subtyping based on their expression revealed two PE subtypes with distinct immune infiltration patterns and biological functions. Regulatory network construction highlighted potential upstream mechanisms.…”
  16. 676

    Data Sheet 1_Differential neuropilin isoform expressions highlight plasticity in macrophages in the heterogenous TME through in-silico profiling.docx by Hyun-Jee Han (20858765)

    Published 2025
    “…Datasets were processed using established bioinformatics pipelines, including clustering algorithms, to determine cellular heterogeneity and quantify NRP isoform expression within distinct macrophage populations. …”
  17. 677

    Data Sheet 2_Differential neuropilin isoform expressions highlight plasticity in macrophages in the heterogenous TME through in-silico profiling.docx by Hyun-Jee Han (20858765)

    Published 2025
    “…Datasets were processed using established bioinformatics pipelines, including clustering algorithms, to determine cellular heterogeneity and quantify NRP isoform expression within distinct macrophage populations. …”
  18. 678

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows by Pierre-Alexis DELAROCHE (22092572)

    Published 2025
    “…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”
  19. 679

    Data used to drive the Double Layer Carbon Model in the Qinling Mountains. by Huiwen Li (17705280)

    Published 2024
    “…., 2022a), to estimate the spatiotemporal dynamics of SOC in different soil layers and further evaluate the impacts of different climate response functions on SOC estimates in the Qinling Mountains. …”
  20. 680

    Table 5_MMPred: a tool to predict peptide mimicry events in MHC class II recognition.xlsx by Filippo Guerri (17017524)

    Published 2024
    “…To evaluate MMPred’s ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. …”