Search alternatives:
algorithm python » algorithms within (Expand Search), algorithm both (Expand Search)
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
algorithms a » algorithms _ (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
a function » _ function (Expand Search)
algorithm python » algorithms within (Expand Search), algorithm both (Expand Search)
within function » fibrin function (Expand Search), protein function (Expand Search), catenin function (Expand Search)
python function » protein function (Expand Search)
algorithms a » algorithms _ (Expand Search), algorithm _ (Expand Search), algorithm b (Expand Search)
a function » _ function (Expand Search)
-
681
-
682
-
683
WheresWalker pipeline utilizes WGS data to identify segregating SNPs and indels.
Published 2025Subjects: -
684
-
685
-
686
-
687
-
688
-
689
SNP Index profile for all chromosomes corresponding to regional plots in Figs 3 and 4.
Published 2025Subjects: -
690
-
691
Bulk Segregant Analysis (BSA) homozygosity mapping mirrors WheresWalker output.
Published 2025Subjects: -
692
-
693
<i>slc3a2a</i><sup><i>zion</i></sup> is a novel regulator of B-lp metabolism.
Published 2025Subjects: -
694
-
695
-
696
WheresWalker identifies the correct chromosomal region for three dark yolk loci.
Published 2025Subjects: -
697
-
698
-
699
PATH has state-of-the-art performance versus previous binding affinity prediction algorithms.
Published 2025“…The benchmarked algorithms include physics-based and deep learning algorithms from the famous AutoDock framework (scoring function of AutoDock4 implemented in the AutoDockFR package [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref068" target="_blank">68</a>,<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref077" target="_blank">77</a>], Vinardo [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref069" target="_blank">69</a>], GNINA [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref070" target="_blank">70</a>]), empirical (AA-Score [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref071" target="_blank">71</a>]), knowledge-based (SMoG2016 [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref072" target="_blank">72</a>]), and deep learning-based scoring functions (OnionNet [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref073" target="_blank">73</a>], PLANET [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013216#pcbi.1013216.ref074" target="_blank">74</a>]). …”
-
700