بدائل البحث:
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithms a » algorithms _ (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
a function » _ function (توسيع البحث)
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithms a » algorithms _ (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
a function » _ function (توسيع البحث)
-
1701
SDAE network hyperparameters.
منشور في 2025"…This research initially proposes an adaptive variational mode decomposition approach based on dung beetle optimization algorithm to decompose and extract signals. At the same time, a composite optimization indicator function based on Tanimoto coefficient, permutation entropy and kurtosis are presented as the fitness function of decomposition to increase the flexibility and robustness of the technique. …"
-
1702
Signal-noise overlap ration comparison.
منشور في 2025"…This research initially proposes an adaptive variational mode decomposition approach based on dung beetle optimization algorithm to decompose and extract signals. At the same time, a composite optimization indicator function based on Tanimoto coefficient, permutation entropy and kurtosis are presented as the fitness function of decomposition to increase the flexibility and robustness of the technique. …"
-
1703
SDAE network training parameters.
منشور في 2025"…This research initially proposes an adaptive variational mode decomposition approach based on dung beetle optimization algorithm to decompose and extract signals. At the same time, a composite optimization indicator function based on Tanimoto coefficient, permutation entropy and kurtosis are presented as the fitness function of decomposition to increase the flexibility and robustness of the technique. …"
-
1704
Time cost comparison.
منشور في 2025"…This research initially proposes an adaptive variational mode decomposition approach based on dung beetle optimization algorithm to decompose and extract signals. At the same time, a composite optimization indicator function based on Tanimoto coefficient, permutation entropy and kurtosis are presented as the fitness function of decomposition to increase the flexibility and robustness of the technique. …"
-
1705
The principle of Partial Convolution.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1706
Ablation experiments results of YOLOv5s.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1707
Overall network architecture of FCMI-YOLO.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1708
The principle of MLCA mechanism.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1709
Parameters of the dataset.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1710
Comparison of mAP@0.5 for different ratios.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1711
Primary training parameters for the model.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1712
Distribution of the dataset.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1713
Parameters of the FasterNext and C3.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1714
System diagram.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1715
Schematic diagram of Inner-IoU.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1716
Model train environment.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1717
The structure of FasterNext.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1718
The structure of MLCA mechanism.
منشور في 2025"…To address this issue, this paper proposes FCMI-YOLO, a real-time fire detection algorithm optimized for edge devices. …"
-
1719
-
1720