بدائل البحث:
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), python function (توسيع البحث), protein function (توسيع البحث)
algorithm a » algorithms a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), python function (توسيع البحث), protein function (توسيع البحث)
algorithm a » algorithms a (توسيع البحث), algorithm _ (توسيع البحث), algorithm b (توسيع البحث)
-
41
-
42
-
43
A detailed process of iterative simulation coupled with bone density algorithm; (a) a function of stimulus and related bone density changes, and (b) iterative calculations of finite element analysis coupled with user’s subroutine for changes in bone density.
منشور في 2025"…<p>A detailed process of iterative simulation coupled with bone density algorithm; (a) a function of stimulus and related bone density changes, and (b) iterative calculations of finite element analysis coupled with user’s subroutine for changes in bone density.…"
-
44
The convergence curves of the test functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
45
Single-peaked reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
46
-
47
-
48
-
49
Explained variance ration of the PCA algorithm.
منشور في 2025"…We developed a mechanism which converts a given medical image to a spectral space which have a base set composed of special functions. …"
-
50
-
51
Fitness comparison on test function.
منشور في 2025"…The study employed traditional benchmark functions and conducted evaluations versus baselines Standard GEP, NMO-SARA, and MS-GEP-A to assess fitness outcomes, R² values, population diversification, and the avoidance of local optima. …"
-
52
Identification and functional analysis of hub genes.
منشور في 2025"…(C, D) Top 10 hub genes identified using the Maximal Clique Centrality (MCC) algorithm; darker colors indicate higher centrality within the PPI network. …"
-
53
Test results of multimodal benchmark functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
54
Fixed-dimensional multimodal reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
55
Test results of multimodal benchmark functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
56
-
57
-
58
R-squared comparison of test function.
منشور في 2025"…The study employed traditional benchmark functions and conducted evaluations versus baselines Standard GEP, NMO-SARA, and MS-GEP-A to assess fitness outcomes, R² values, population diversification, and the avoidance of local optima. …"
-
59
-
60