Showing 561 - 580 results of 731 for search '(( algorithm within function ) OR ( algorithm python function ))*', query time: 0.20s Refine Results
  1. 561

    Image 8_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  2. 562

    Image 2_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  3. 563

    Image 9_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  4. 564

    Image 6_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  5. 565

    Image 7_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  6. 566

    Image 5_MS4A7 based metabolic gene signature as a prognostic predictor in lung adenocarcinoma.jpeg by Yan Jiang (12139)

    Published 2025
    “…</p>Methods<p>A prognostic signature for LUAD was developed using the LASSO-Cox regression algorithm with RNA-seq data from 500 LUAD patients in The Cancer Genome Atlas database. …”
  7. 567
  8. 568
  9. 569
  10. 570
  11. 571

    Data Sheet 2_Characterization of the salivary microbiome in healthy individuals under fatigue status.docx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  12. 572

    Table 3_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  13. 573

    Data Sheet 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.docx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  14. 574

    Table 5_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  15. 575

    Table 4_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  16. 576

    Table 2_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  17. 577

    Table 1_Characterization of the salivary microbiome in healthy individuals under fatigue status.xlsx by Xianhui Peng (14551488)

    Published 2025
    “…Bioinformatics analyses encompassed assessment of alpha and beta diversity, identification of differential taxa using Linear discriminant analysis Effect Size (LEfSe) with multi-method cross-validation, construction of microbial co-occurrence networks, and screening of fatigue-associated biomarker genera via the Boruta-SHAP algorithm. Microbial community phenotypes and potential functional pathways were predicted using BugBase and PICRUSt2, respectively.…”
  18. 578

    CIAHS-Data.xls by Yingchang Li (22195585)

    Published 2025
    “…This method identifies inherent natural grouping points within the data through the Jenks optimization algorithm, maximizing between-class differences while minimizing within-class differences37. …”
  19. 579

    Table 1_Development of a prognostic prediction model and visualization system for autologous costal cartilage rhinoplasty: an automated machine learning approach.docx by Aihemaitijiang Niyazi (22355542)

    Published 2025
    “…We proposed an improved metaheuristic algorithm (INPDOA) for AutoML optimization, validated against 12 CEC2022 benchmark functions. …”
  20. 580

    <b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b> by Shubham Pawar (22471285)

    Published 2025
    “…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…”