يعرض 1 - 20 نتائج من 1,441 نتيجة بحث عن '(( algorithm within function ) OR ( algorithm rate function ))', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1
  2. 2

    Multimodal reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  3. 3

    Test functions. حسب Kejia Liu (5699651)

    منشور في 2025
    الموضوعات:
  4. 4

    The convergence curves of the test functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  5. 5

    Single-peaked reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  6. 6
  7. 7

    Test results of multimodal benchmark functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  8. 8

    Fixed-dimensional multimodal reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  9. 9

    Test results of multimodal benchmark functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  10. 10
  11. 11

    Fitness comparison on test function. حسب Kejia Liu (5699651)

    منشور في 2025
    الموضوعات:
  12. 12

    R-squared comparison of test function. حسب Kejia Liu (5699651)

    منشور في 2025
    الموضوعات:
  13. 13

    Reward function related parameters. حسب Honglei Pang (22693724)

    منشور في 2025
    "…A multi-objective reward function is formulated using stability indicators, including critical tire slip angle, critical sideslip angle, and critical yaw rate thresholds. …"
  14. 14
  15. 15
  16. 16

    Image 4_Construction of a right ventricular function assessment model in patients undergoing invasive mechanical ventilation based on VExUS grading and the classification and regre... حسب Jun Gao (203098)

    منشور في 2025
    "…Objective<p>Investigate the correlation between right ventricular function ultrasound indicators and the Venous Excess Ultrasound (VExUS) grading system in patients undergoing invasive mechanical ventilation (IMV), and develop a right ventricular function assessment model using VExUS grading and the Classification and Regression Tree (CART) algorithm.…"
  17. 17

    Image 1_Construction of a right ventricular function assessment model in patients undergoing invasive mechanical ventilation based on VExUS grading and the classification and regre... حسب Jun Gao (203098)

    منشور في 2025
    "…Objective<p>Investigate the correlation between right ventricular function ultrasound indicators and the Venous Excess Ultrasound (VExUS) grading system in patients undergoing invasive mechanical ventilation (IMV), and develop a right ventricular function assessment model using VExUS grading and the Classification and Regression Tree (CART) algorithm.…"
  18. 18

    Image 3_Construction of a right ventricular function assessment model in patients undergoing invasive mechanical ventilation based on VExUS grading and the classification and regre... حسب Jun Gao (203098)

    منشور في 2025
    "…Objective<p>Investigate the correlation between right ventricular function ultrasound indicators and the Venous Excess Ultrasound (VExUS) grading system in patients undergoing invasive mechanical ventilation (IMV), and develop a right ventricular function assessment model using VExUS grading and the Classification and Regression Tree (CART) algorithm.…"
  19. 19

    Image 2_Construction of a right ventricular function assessment model in patients undergoing invasive mechanical ventilation based on VExUS grading and the classification and regre... حسب Jun Gao (203098)

    منشور في 2025
    "…Objective<p>Investigate the correlation between right ventricular function ultrasound indicators and the Venous Excess Ultrasound (VExUS) grading system in patients undergoing invasive mechanical ventilation (IMV), and develop a right ventricular function assessment model using VExUS grading and the Classification and Regression Tree (CART) algorithm.…"
  20. 20