بدائل البحث:
within functional » without functional (توسيع البحث), obtain functional (توسيع البحث), brain functional (توسيع البحث)
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm i » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
within functional » without functional (توسيع البحث), obtain functional (توسيع البحث), brain functional (توسيع البحث)
algorithm python » algorithms within (توسيع البحث), algorithm both (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm i » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
i function » _ function (توسيع البحث), a function (توسيع البحث), 1 function (توسيع البحث)
-
161
-
162
-
163
Relearning under noisy feedback signal using recursive-least-squares algorithm and local learning algorithm [47].
منشور في 2021"…<p>(A-B) Relearning performance, measured as mean squared error (MSE), as a function of the amplitude of the noise in the feedback signal using recursive-least-squares (RLS) algorithm (A) and an alternative implementation with a local learning algorithm (Eprop) (B). …"
-
164
Test results of multimodal benchmark functions.
منشور في 2025"…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
165
Fixed-dimensional multimodal reference functions.
منشور في 2025"…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
166
Test results of multimodal benchmark functions.
منشور في 2025"…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
167
-
168
Speed response and torque response results when parameter <i>H</i><sub>0</sub> changes.
منشور في 2024الموضوعات: -
169
-
170
Ping-Pong percentage versus number of time samples.
منشور في 2023الموضوعات: "…gravitational search algorithm…"
-
171
Handover percentage versus number of time samples.
منشور في 2023الموضوعات: "…gravitational search algorithm…"
-
172
Handover percentage versus number of users.
منشور في 2023الموضوعات: "…gravitational search algorithm…"
-
173
-
174
-
175
-
176
-
177
-
178
-
179
-
180