يعرض 161 - 180 نتائج من 12,907 نتيجة بحث عن '(( algorithm within functional ) OR ((( algorithm python function ) OR ( algorithm i function ))))', وقت الاستعلام: 0.98s تنقيح النتائج
  1. 161
  2. 162
  3. 163

    Relearning under noisy feedback signal using recursive-least-squares algorithm and local learning algorithm [47]. حسب Barbara Feulner (10104552)

    منشور في 2021
    "…<p>(A-B) Relearning performance, measured as mean squared error (MSE), as a function of the amplitude of the noise in the feedback signal using recursive-least-squares (RLS) algorithm (A) and an alternative implementation with a local learning algorithm (Eprop) (B). …"
  4. 164

    Test results of multimodal benchmark functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  5. 165

    Fixed-dimensional multimodal reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  6. 166

    Test results of multimodal benchmark functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…For the early-stage diabetes dataset, LGWO-BP achieved an accuracy of 0.92, a recall of 0.93, a precision of 0.88, an F1-score of 0.91, and an AUC of 0.95. Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  7. 167
  8. 168
  9. 169
  10. 170

    Ping-Pong percentage versus number of time samples. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  11. 171

    Handover percentage versus number of time samples. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  12. 172

    Handover percentage versus number of users. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  13. 173

    MADM methods’ general flowchart. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  14. 174

    Saaty’s scale of importance. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  15. 175

    Load distribution results. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  16. 176

    Power consumption results. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  17. 177

    Handover percentage results. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  18. 178

    System model. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  19. 179

    Candidate networks attribute values. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"
  20. 180

    Load distribution results. حسب Nada Ahmed Ezz-Eldien (17396553)

    منشور في 2023
    الموضوعات: "…gravitational search algorithm…"