Search alternatives:
algorithms based » algorithm based (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
based function » based functional (Expand Search), basis function (Expand Search), basis functions (Expand Search)
algorithm a » algorithm _ (Expand Search), algorithm b (Expand Search), algorithms _ (Expand Search)
a function » _ function (Expand Search)
algorithms based » algorithm based (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
python function » protein function (Expand Search)
based function » based functional (Expand Search), basis function (Expand Search), basis functions (Expand Search)
algorithm a » algorithm _ (Expand Search), algorithm b (Expand Search), algorithms _ (Expand Search)
a function » _ function (Expand Search)
-
21
Main parameters of braking system.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
22
EMB and SBW system structure.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
23
Raw data.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
24
Code program.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
25
The HIL simulation data flowchart.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
26
Steering system model.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
27
Hyperparameter Configurations in PPO Training.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
28
Main parameters of steering system.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
29
Co-simulation architecture.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
30
Overall framework diagram of the study.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
31
Braking system model.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
32
Vehicle parameters.
Published 2025“…To address the issue of maintaining vehicle stability during emergency braking on roads with low and non-uniform adhesion, this paper proposes an intelligent integrated longitudinal and lateral stability control algorithm based on the Proximal Policy Optimization (PPO) algorithm. …”
-
33
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
-
34
-
35
Discovery of Protein Modifications Using Differential Tandem Mass Spectrometry Proteomics
Published 2021“…Termed SAMPEI for spectral alignment-based modified peptide identification, this open-source algorithm is designed for the discovery of functional protein and peptide signaling modifications, without prior knowledge of their identities. …”
-
36
Discovery of Protein Modifications Using Differential Tandem Mass Spectrometry Proteomics
Published 2021“…Termed SAMPEI for spectral alignment-based modified peptide identification, this open-source algorithm is designed for the discovery of functional protein and peptide signaling modifications, without prior knowledge of their identities. …”
-
37
-
38
-
39
Python code for a rule-based NLP model for mapping circular economy indicators to SDGs
Published 2025“…The package includes:</p><ul><li>The complete Python codebase implementing the classification algorithm</li><li>A detailed manual outlining model features, requirements, and usage instructions</li><li>Sample input CSV files and corresponding processed output files to demonstrate functionality</li><li>Keyword dictionaries for all 17 SDGs, distinguishing strong and weak matches</li></ul><p dir="ltr">These materials enable full reproducibility of the study, facilitate adaptation for related research, and offer transparency in the methodological framework.…”
-
40
Data_Sheet_1_Processing Pipeline for Atlas-Based Imaging Data Analysis of Structural and Functional Mouse Brain MRI (AIDAmri).docx
Published 2019“…Here, we describe AIDAmri, a novel Atlas-based Imaging Data Analysis pipeline to process structural and functional mouse brain data including anatomical MRI, fiber tracking using diffusion tensor imaging (DTI) and functional connectivity analysis using resting-state functional MRI (rs-fMRI). …”