Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithms real » algorithms a (Expand Search), algorithms less (Expand Search), algorithms risk (Expand Search)
python function » protein function (Expand Search)
real function » renal function (Expand Search), petal function (Expand Search), cell function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search), algorithm both (Expand Search)
algorithms real » algorithms a (Expand Search), algorithms less (Expand Search), algorithms risk (Expand Search)
python function » protein function (Expand Search)
real function » renal function (Expand Search), petal function (Expand Search), cell function (Expand Search)
-
1
-
2
Dataset of networks used in assessing the Troika algorithm for clique partitioning and community detection
Published 2025“…Each network is provided in .gml format or .pkl format which can be read into a networkX graph object using standard functions from the networkX library in Python. For accessing other networks used in the study, please refer to the article for references to the primary sources of those network data.…”
-
3
-
4
-
5
List of Abbreviations
Published 2025“…For advanced users, it facilitates the seamless integration of custom functionalities and novel algorithms with minimal coding, ensuring adaptability at each design stage. …”
-
6
The results of ICA performed using PyNoetic.
Published 2025“…For advanced users, it facilitates the seamless integration of custom functionalities and novel algorithms with minimal coding, ensuring adaptability at each design stage. …”
-
7
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
Published 2025“…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…”
-
8
Brain-in-the-Loop Learning for Intelligent Vehicle Decision-Making
Published 2025“…In this paper, we utilize functional near-infrared spectroscopy (fNIRS) signals as real-time human risk-perception feedback to establish a brain-in-the-loop (BiTL) trained artificial intelligence algorithm for decision-making. …”
-
9
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …”