بدائل البحث:
algorithms within » algorithm within (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), i function (توسيع البحث)
algorithms within » algorithm within (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), i function (توسيع البحث)
-
921
Table 6_Integrative single-cell and spatial transcriptomics analysis reveals FLAD1 as a regulator of the immune microenvironment in hepatocellular carcinoma.xlsx
منشور في 2025"…A modeling approach using 92 combinations of nine machine learning algorithms was applied, producing a predictive model with good performance. …"
-
922
-
923
-
924
-
925
-
926
-
927
-
928
-
929
-
930
-
931
Table 4_DEPDC1B, CDCA2, APOBEC3B, and TYMS are potential hub genes and therapeutic targets for diagnosing dialysis patients with heart failure.xlsx
منشور في 2025"…</p>Results<p>Totally 23 candidate genes were screened out by overlapping 673 differentially expressed genes (DEGs) and 147 key module genes, of which four hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two machine learning algorithms. …"
-
932
Table 1_DEPDC1B, CDCA2, APOBEC3B, and TYMS are potential hub genes and therapeutic targets for diagnosing dialysis patients with heart failure.xlsx
منشور في 2025"…</p>Results<p>Totally 23 candidate genes were screened out by overlapping 673 differentially expressed genes (DEGs) and 147 key module genes, of which four hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two machine learning algorithms. …"
-
933
Image 1_DEPDC1B, CDCA2, APOBEC3B, and TYMS are potential hub genes and therapeutic targets for diagnosing dialysis patients with heart failure.pdf
منشور في 2025"…</p>Results<p>Totally 23 candidate genes were screened out by overlapping 673 differentially expressed genes (DEGs) and 147 key module genes, of which four hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two machine learning algorithms. …"
-
934
Table 2_DEPDC1B, CDCA2, APOBEC3B, and TYMS are potential hub genes and therapeutic targets for diagnosing dialysis patients with heart failure.xlsx
منشور في 2025"…</p>Results<p>Totally 23 candidate genes were screened out by overlapping 673 differentially expressed genes (DEGs) and 147 key module genes, of which four hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two machine learning algorithms. …"
-
935
Table 3_DEPDC1B, CDCA2, APOBEC3B, and TYMS are potential hub genes and therapeutic targets for diagnosing dialysis patients with heart failure.xlsx
منشور في 2025"…</p>Results<p>Totally 23 candidate genes were screened out by overlapping 673 differentially expressed genes (DEGs) and 147 key module genes, of which four hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two machine learning algorithms. …"
-
936
Table 5_DEPDC1B, CDCA2, APOBEC3B, and TYMS are potential hub genes and therapeutic targets for diagnosing dialysis patients with heart failure.xlsx
منشور في 2025"…</p>Results<p>Totally 23 candidate genes were screened out by overlapping 673 differentially expressed genes (DEGs) and 147 key module genes, of which four hub genes (DEPDC1B, CDCA2, APOBEC3B and TYMS) were obtained by two machine learning algorithms. …"
-
937
-
938
-
939
Table 1_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx
منشور في 2025"…</p>Methods<p>We integrated placental transcriptomic data from two datasets (GSE75010, GSE10588) to systematically investigate ribosome biogenesis dysregulation in preeclampsia. Functional enrichment analyses delineated the dysregulation of pathways, while weighted gene co-expression network analysis identified hub genes within ribosome biogenesis-associated modules. …"
-
940
Table 4_Explainable machine learning reveals ribosome biogenesis biomarkers in preeclampsia risk prediction.xlsx
منشور في 2025"…</p>Methods<p>We integrated placental transcriptomic data from two datasets (GSE75010, GSE10588) to systematically investigate ribosome biogenesis dysregulation in preeclampsia. Functional enrichment analyses delineated the dysregulation of pathways, while weighted gene co-expression network analysis identified hub genes within ribosome biogenesis-associated modules. …"