بدائل البحث:
algorithms within » algorithm within (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), i function (توسيع البحث)
algorithms within » algorithm within (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithm both (توسيع البحث)
within function » fibrin function (توسيع البحث), protein function (توسيع البحث), catenin function (توسيع البحث)
python function » protein function (توسيع البحث)
algorithm b » algorithm _ (توسيع البحث), algorithms _ (توسيع البحث)
b function » _ function (توسيع البحث), a function (توسيع البحث), i function (توسيع البحث)
-
1021
The values of other input parameters.
منشور في 2025"…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …"
-
1022
Optimized unbalanced train operation chart.
منشور في 2025"…We propose a time-space-state three-dimensional network (TSSN) that integrates preferences for travel time, fares, and seat classes. Impedance functions for various network arcs are developed, incorporating these three key attributes of travel demand and transforming the passenger travel choice issue into a path selection problem within the TSSN. …"
-
1023
-
1024
-
1025
-
1026
-
1027
-
1028
-
1029
-
1030
-
1031
-
1032
Transitions between states for different scenario.
منشور في 2025"…Row (3) panels display kinetic potentials at the steady state as a function of the variable . These potentials are calculated based on the corresponding steady-state probability distributions, obtained through the Gillespie algorithm over 100.000 simulations, which are then smoothed into continuous distributions using kernel density estimation. …"
-
1033
Interactive visualization of ocean unsteady flow data based on dynamic adaptive pathline
منشور في 2025"…Moreover, it has the capability to dynamically capture intricate features within complex flow fields.</p>…"
-
1034
A. Explanation of the data points used by EpiFusion; B. the key parameters of the EpiFusion particle filter.
منشور في 2024"…Beta must vary over time and can either be fit using (i) a random walk within the particle filter, (ii) linear splines within the particle filter, (iii) MCMC fitting in epochs by fixing or fitting change times and interval values, or (iv) MCMC fitting the parameters of a logistic function which defines beta over time; C. …"
-
1035
-
1036
-
1037
Residual risk of undetected blood-borne virus infection in deceased organ donors: Residual risk visualiser website
منشور في 2025"…<p dir="ltr"><b>Risk of Unexpected Donor Infection: Quarantine Adjusted Window Period Visualisation Tool</b></p><p dir="ltr">Before donation, deceased organ donors are screened for blood-borne viruses. …"
-
1038
Supplementary Material for: Dynamic Prediction of Cardiovascular Death among Old People with Mildly Reduced Kidney Function Using Deep Learning Models Based on a Prospective Cohort...
منشور في 2025"…ABSTRACT Aim: Cardiovascular disease (CVD) is more likely to occur in old people with mildly reduced kidney function. We aimed to identify target features in this cohort to reduce cardiovascular death using deep learning models. …"
-
1039
-
1040