Search alternatives:
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
time process » like process (Expand Search), time processing (Expand Search), entire process (Expand Search)
binary time » binary image (Expand Search)
binary 1 » binary _ (Expand Search)
1 based » _ based (Expand Search)
process optimization » model optimization (Expand Search)
based optimization » whale optimization (Expand Search)
time process » like process (Expand Search), time processing (Expand Search), entire process (Expand Search)
binary time » binary image (Expand Search)
binary 1 » binary _ (Expand Search)
1 based » _ based (Expand Search)
-
1
-
2
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025Subjects: -
3
Feature selection process.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
4
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
5
-
6
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. …”
-
7
-
8
-
9
-
10
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
11
-
12
-
13
Comparison of total time consumed for different offloading algorithms.for N = 10, 20, 30.
Published 2025Subjects: -
14
-
15
-
16
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…When the number of images reaches 80,000, the training time of the proposed algorithm is only 1/5 that of traditional single-node architecture algorithms. …”
-
17
-
18
Algorithm for generating hyperparameter.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
19
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
Published 2020“…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
-
20
Results of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”