Showing 41 - 60 results of 135 for search '(( binary 1 derived optimization algorithm ) OR ( binary based process optimization algorithm ))', query time: 0.62s Refine Results
  1. 41
  2. 42

    Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization by Sandeep Jagonda Patil (22048337)

    Published 2025
    “…The performance of the proposed LEGAN-BEPO-BCMANET technique attains 29.786%, 19.25%, 22.93%, 27.21%, 31.02%, 26.91%, and 25.61% greater throughput, compared to existing methods like Blockchain-based BATMAN protocol utilizing MANET with an ensemble algorithm (BATMAN-MANET), Block chain-based trusted distributed routing scheme with optimized dropout ensemble extreme learning neural network in MANET (DEELNN-MANET), A secured trusted routing utilizing structure of a new directed acyclic graph-blockchain in MANET internet of things environment (DAG-MANET), An Optimized Link State Routing Protocol with Blockchain Framework for Efficient Video-Packet Transmission and Security over MANET (OLSRP-MANET), Auto-metric Graph Neural Network based Blockchain Technology for Protected Dynamic Optimum Routing in MANET (AGNN-MANET) and Data security-based routing in MANETs under key management process (DSR-MANET) respectively.…”
  3. 43

    A* Path-Finding Algorithm to Determine Cell Connections by Max Weng (22327159)

    Published 2025
    “…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. The A* algorithm then evaluated connectivity by minimizing Euclidean distance and heuristic cost between cells. …”
  4. 44
  5. 45

    An Example of a WPT-MEC Network. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  6. 46

    Related Work Summary. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  7. 47

    Simulation parameters. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  8. 48

    Training losses for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  9. 49

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  10. 50

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
  11. 51
  12. 52
  13. 53

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. by Jiaqing Luo (10975030)

    Published 2021
    “…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
  14. 54

    Parameter settings. by Yang Cao (53545)

    Published 2024
    “…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …”
  15. 55

    Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes by Yu Y. (3096192)

    Published 2022
    “…We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …”
  16. 56
  17. 57
  18. 58
  19. 59
  20. 60