Search alternatives:
processing optimization » process optimization (Expand Search), process optimisation (Expand Search), routing optimization (Expand Search)
from optimization » fox optimization (Expand Search), swarm optimization (Expand Search), codon optimization (Expand Search)
data processing » image processing (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary 1 » binary _ (Expand Search)
processing optimization » process optimization (Expand Search), process optimisation (Expand Search), routing optimization (Expand Search)
from optimization » fox optimization (Expand Search), swarm optimization (Expand Search), codon optimization (Expand Search)
data processing » image processing (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary 1 » binary _ (Expand Search)
-
81
Dynamic resource allocation process.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
82
-
83
Thesis-RAMIS-Figs_Slides
Published 2024“…In addition, the practical benefits for \emph{<i>MPS</i>} in the context of simulating channelized facies models is demonstrated using synthetic data and real geological facies. …”
-
84
-
85
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
86
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
87
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
88
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
89
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
90
Summary of Notations Used in this paper.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
91
DataSheet_1_Raman Spectroscopic Differentiation of Streptococcus pneumoniae From Other Streptococci Using Laboratory Strains and Clinical Isolates.pdf
Published 2022“…Together with Raman spectra of 59 Streptococcus patient isolates, they were used to train and optimize binary classification models (PLS-DA). The effect of normalization on the model accuracy was compared, as one example for optimization potential for future modelling. …”
-
92
Image2_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.JPEG
Published 2022“…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
-
93
Image4_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.jpg
Published 2022“…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
-
94
Image5_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.jpg
Published 2022“…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
-
95
Image3_Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm.JPEG
Published 2022“…This study proposes an alternative approach by implementing bipartite graph search optimization using the branch and bound algorithm to discover the combination or composition of Jamu formulas by optimizing the search on a plant–protein bipartite graph. …”
-
96
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
-
97
-
98
Contextual Dynamic Pricing with Strategic Buyers
Published 2024“…<p>Personalized pricing, which involves tailoring prices based on individual characteristics, is commonly used by firms to implement a consumer-specific pricing policy. In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. …”
-
99
Pressure-Stabilized Zinc Trifluoride
Published 2020“…By combining the particle swarm optimization algorithm with first-principles calculation, the high-pressure phase diagram of Zn–F binary compounds was established. …”
-
100