Showing 161 - 180 results of 245 for search '(( binary 2 based optimization algorithm ) OR ( primary data process optimization algorithm ))', query time: 0.47s Refine Results
  1. 161

    The architecture of LSTM cell. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  2. 162

    The architecture of ILSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  3. 163

    Parameter setting for LSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  4. 164

    LITNET-2020 data splitting approach. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  5. 165

    Transformation of symbolic features in NSL-KDD. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  6. 166

    Data used to drive the Double Layer Carbon Model in the Qinling Mountains. by Huiwen Li (17705280)

    Published 2024
    “…It also incorporates climate change responses, adjust decomposition rates based on climate and environmental changes, and lead to robust estimates under different climatic scenarios. The simulation process of the DLCM involves initializing SOC stocks with spatially detailed baseline data, adding organic matter inputs based on vegetation production, and simulating microbial decomposition while adjusting for climate variables such as temperature and soil moisture. …”
  7. 167
  8. 168
  9. 169

    Parameter settings. by Yang Cao (53545)

    Published 2024
    “…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …”
  10. 170

    Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX by Umesh C. Sharma (10785063)

    Published 2021
    “…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …”
  11. 171

    Data_Sheet_1_Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer.pdf by Maliheh Aramon (6557906)

    Published 2019
    “…The Digital Annealer's algorithm is currently based on simulated annealing; however, it differs from it in its utilization of an efficient parallel-trial scheme and a dynamic escape mechanism. …”
  12. 172

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  13. 173
  14. 174
  15. 175

    SPAM-XAI confusion matrix. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  16. 176

    Illustration of MLP. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  17. 177

    Dataset detail division. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  18. 178

    Software defects types. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  19. 179

    SMOTE representation. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  20. 180

    Demonstration confusion matrix. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”