Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
basic process » based process (Expand Search), basic protein (Expand Search)
binary basic » binary mask (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 model » _ model (Expand Search), a model (Expand Search), 3d model (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
basic process » based process (Expand Search), basic protein (Expand Search)
binary basic » binary mask (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 model » _ model (Expand Search), a model (Expand Search), 3d model (Expand Search)
-
161
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
Published 2025“…Demographic, clinical, and heavy metal biomarker data (e.g., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”
-
162
An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach
Published 2025“…Binary classification models were developed to classify cases into two groups: those transferring two or fewer embryos and those transferring three or four. …”
-
163
Table 1_Creating an interactive database for nasopharyngeal carcinoma management: applying machine learning to evaluate metastasis and survival.docx
Published 2024“…Five machine learning models were deployed for the binary classification task of DM, and their performance was evaluated using the area under the curve (AUC). …”
-
164
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”