يعرض 21 - 40 نتائج من 49 نتيجة بحث عن '(( binary 3 based optimization algorithm ) OR ( binary image wolf optimization algorithm ))', وقت الاستعلام: 1.01s تنقيح النتائج
  1. 21

    Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity حسب George S. Watts (7962206)

    منشور في 2019
    "…We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. …"
  2. 22
  3. 23

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. حسب Jiaqing Luo (10975030)

    منشور في 2021
    "…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
  4. 24
  5. 25

    Flowchart scheme of the ML-based model. حسب Noshaba Qasmi (20405009)

    منشور في 2024
    "…<b>F)</b> Feature extraction using three different steps: <b>Fi)</b> Color moments in different orders based on color distribution. …"
  6. 26

    Testing results for classifying AD, MCI and NC. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
  7. 27

    Summary of existing CNN models. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
  8. 28

    Analysis and design of algorithms for the manufacturing process of integrated circuits حسب Sonia Fleytas (16856403)

    منشور في 2023
    "…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. …"
  9. 29
  10. 30
  11. 31

    Parameter settings. حسب Yang Cao (53545)

    منشور في 2024
    "…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …"
  12. 32

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP حسب Xiaoyuan Wang (492534)

    منشور في 2022
    "…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …"
  13. 33
  14. 34

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  15. 35
  16. 36

    Fig 12 - حسب Nisha Yadav (366131)

    منشور في 2024
  17. 37

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf حسب Cecilia Lindig-León (7889777)

    منشور في 2020
    "…The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. …"
  18. 38

    Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX حسب Hasan Zulfiqar (12117255)

    منشور في 2023
    "…The obtained features were optimized by using correlation and the mRMR-based algorithm. …"
  19. 39
  20. 40

    Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease حسب Zhuoyan Chen (12193358)

    منشور في 2025
    "…<i>Z</i> score standardization and independent sample <i>t</i> test were applied to identify optimal predictive features, which were then utilized in seven ML algorithms for training and validation. …"