Showing 101 - 120 results of 150 for search '(( binary 95 based optimization algorithm ) OR ( primary data processing optimization algorithm ))', query time: 0.54s Refine Results
  1. 101

    Early Parkinson’s disease identification via hybrid feature selection from multi-feature subsets and optimized CatBoost with SMOTE by Subhashree Mohapatra (17387852)

    Published 2025
    “…The proposed framework leverages a strong categorical boosting (CatBoost) algorithm optimized using Grid Search Optimization (GSO). …”
  2. 102

    Minimal Dateset. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  3. 103

    Loss Function Comparison. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  4. 104

    Comparative Results of Different Models. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  5. 105

    Loss Function Comparison. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  6. 106

    Overall Framework of the PSO-KM Model. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  7. 107

    Overall Framework of the PSO-KM Model. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  8. 108
  9. 109
  10. 110

    Supplementary file 1_Development of a venous thromboembolism risk prediction model for patients with primary membranous nephropathy based on machine learning.docx by Lian Li (49049)

    Published 2025
    “…Objective<p>This study utilizes real-world data from primary membranous nephropathy (PMN) patients to preliminarily develop a venous thromboembolism (VTE) risk prediction model with machine learning. …”
  11. 111
  12. 112
  13. 113

    Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx by Veera Narayana Balabathina (22518524)

    Published 2025
    “…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”
  14. 114

    SPAM-XAI confusion matrix. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  15. 115

    Illustration of MLP. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  16. 116

    Dataset detail division. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  17. 117

    Software defects types. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  18. 118

    SMOTE representation. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  19. 119

    Demonstration confusion matrix. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  20. 120

    Analysis PC2 AU-ROC curve. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”