Search alternatives:
processing optimization » process optimization (Expand Search), process optimisation (Expand Search), routing optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary image » primary stage (Expand Search), primary immune (Expand Search), primary care (Expand Search)
binary 95 » binary _ (Expand Search), binary b (Expand Search)
95 based » 05 based (Expand Search), _ based (Expand Search), 1 based (Expand Search)
processing optimization » process optimization (Expand Search), process optimisation (Expand Search), routing optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary image » primary stage (Expand Search), primary immune (Expand Search), primary care (Expand Search)
binary 95 » binary _ (Expand Search), binary b (Expand Search)
95 based » 05 based (Expand Search), _ based (Expand Search), 1 based (Expand Search)
-
41
-
42
Image 1_Machine learning for predicting neoadjuvant chemotherapy effectiveness using ultrasound radiomics features and routine clinical data of patients with breast cancer.jpeg
Published 2025“…Subsequently, construction of clinical predictive models and Rad score joint clinical predictive models using ML algorithms for optimal diagnostic performance. The diagnostic process of the ML model was visualized and analyzed using SHapley Additive exPlanation (SHAP).…”
-
43
Sample image for illustration.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
44
Comparison analysis of computation time.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
45
Process flow diagram of CBFD.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
46
Precision recall curve.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
47
Quadratic polynomial in 2D image plane.
Published 2024“…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …”
-
48
DataSheet_1_A machine learning model based on ultrasound image features to assess the risk of sentinel lymph node metastasis in breast cancer patients: Applications of scikit-learn...
Published 2022“…Then we constructed a clinical prediction model which was based on the ML algorithm with the best diagnostic performance. Finally, we used SHapley Additive exPlanation (SHAP) to visualize and analyze the diagnostic process of the ML model.…”