Search alternatives:
generative optimization » generation optimization (Expand Search), iterative optimization (Expand Search), cooperative optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
based generative » based genetic (Expand Search), deep generative (Expand Search)
lens » less (Expand Search)
generative optimization » generation optimization (Expand Search), iterative optimization (Expand Search), cooperative optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
based generative » based genetic (Expand Search), deep generative (Expand Search)
lens » less (Expand Search)
-
1
Lens imaging opposition-based learning.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
2
-
3
Compare algorithm parameter settings.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
4
-
5
-value on CEC2022 (dim = 20).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
6
Precision elimination strategy.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
7
Results of low-light image enhancement test.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
8
-value on 23 benchmark functions (dim = 30).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
9
Evaluation metrics obtained by SBOA and MESBOA.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
10
Generation steps of user profiles.
Published 2025“…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
-
11
Parameter settings.
Published 2025“…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
-
12
Fusion framework.
Published 2025“…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
-
13
Minisymposterium: Muq-Hippylib: A Bayesian Inference Software Framework Integrating Data with Complex Predictive Models under Uncertainty
Published 2021“…In this poster, we present an extensible software framework MUQ-hIPPYlib that overcomes this hurdle by providing unprecedented access to state-of-the-art algorithms for Bayesian inverse problems. MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward models to come equipped with gradients/Hessians to permit large-scale solution. hIPPYlib implements powerful large-scale gradient/Hessian-based solvers in an environment that can automatically generate needed derivatives, but it lacks full Bayesian capabilities. …”
-
14
SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
Published 2020“…MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward models to come equipped with gradients/Hessians to permit large-scale solution. hIPPYlib implements powerful large-scale gradient/Hessian-based solvers in an environment that can automatically generate needed derivatives, but it lacks full Bayesian capabilities. …”
-
15
SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
Published 2020“…MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward models to come equipped with gradients/Hessians to permit large-scale solution. hIPPYlib implements powerful large-scale gradient/Hessian-based solvers in an environment that can automatically generate needed derivatives, but it lacks full Bayesian capabilities. …”