Search alternatives:
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
design optimization » bayesian optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
-
1
-
2
Proposed Algorithm.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
3
-
4
Comparisons between ADAM and NADAM optimizers.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
5
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
6
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
7
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
8
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
9
-
10
-
11
-
12
-
13
-
14
-
15
Medium-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
16
-
17
Large-scale dataset comparative analysis using the number of features selected.
Published 2023Subjects: -
18
-
19
-
20