Search alternatives:
design optimization » bayesian optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary naive » binary pairs (Expand Search)
naive model » canine model (Expand Search)
design optimization » bayesian optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary naive » binary pairs (Expand Search)
naive model » canine model (Expand Search)
-
1
DE algorithm flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
2
-
3
-
4
-
5
Test results of different algorithms.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
6
-
7
-
8
-
9
-
10
-
11
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
Published 2022“…An assay matrix based on CI and DS was prepared for 335 assays with biologically intended target information, and 28 CI assays and 3 DS assays were selected. Thirty models established by combining five molecular fingerprints (i.e., Morgan, MACCS, RDKit, Pattern, and Layered) and six algorithms [i.e., gradient boosting tree, random forest (RF), multi-layered perceptron, <i>k</i>-nearest neighbor, logistic regression, and naive Bayes] were trained using the selected assay data set. …”