بدائل البحث:
comparison optimization » composition optimization (توسيع البحث), compared optimization (توسيع البحث), carbon optimization (توسيع البحث)
joint optimization » policy optimization (توسيع البحث), wolf optimization (توسيع البحث), codon optimization (توسيع البحث)
mask comparison » map comparison (توسيع البحث), risk comparison (توسيع البحث), based comparison (توسيع البحث)
binary mask » binary image (توسيع البحث)
comparison optimization » composition optimization (توسيع البحث), compared optimization (توسيع البحث), carbon optimization (توسيع البحث)
joint optimization » policy optimization (توسيع البحث), wolf optimization (توسيع البحث), codon optimization (توسيع البحث)
mask comparison » map comparison (توسيع البحث), risk comparison (توسيع البحث), based comparison (توسيع البحث)
binary mask » binary image (توسيع البحث)
-
1
-
2
-
3
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
منشور في 2022"…We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …"
-
4
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …"
-
5
Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods
منشور في 2022"…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …"