بدائل البحث:
required optimization » guided optimization (توسيع البحث), resource optimization (توسيع البحث), feature optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
primary aim » primary care (توسيع البحث), primary data (توسيع البحث)
aim model » ai model (توسيع البحث), arima model (توسيع البحث), a model (توسيع البحث)
required optimization » guided optimization (توسيع البحث), resource optimization (توسيع البحث), feature optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
primary aim » primary care (توسيع البحث), primary data (توسيع البحث)
aim model » ai model (توسيع البحث), arima model (توسيع البحث), a model (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
Flowchart of simple ant colony algorithm.
منشور في 2025"…Based on a comprehensive assessment of service transmission reliability and time costs, a route satisfaction evaluation function model has been developed. Utilizing this model, an enhanced Risk-Time Ant Colony Optimization (RT-ACO) routing algorithm is proposed, which builds upon the traditional ant colony algorithm. …"
-
9
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
10
-
11
-
12
-
13
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
14
-
15
-
16
-
17
Business priorities.
منشور في 2025"…Based on a comprehensive assessment of service transmission reliability and time costs, a route satisfaction evaluation function model has been developed. Utilizing this model, an enhanced Risk-Time Ant Colony Optimization (RT-ACO) routing algorithm is proposed, which builds upon the traditional ant colony algorithm. …"
-
18
Topology of 14-node communication network.
منشور في 2025"…Based on a comprehensive assessment of service transmission reliability and time costs, a route satisfaction evaluation function model has been developed. Utilizing this model, an enhanced Risk-Time Ant Colony Optimization (RT-ACO) routing algorithm is proposed, which builds upon the traditional ant colony algorithm. …"
-
19
Routing policy based on path satisfaction.
منشور في 2025"…Based on a comprehensive assessment of service transmission reliability and time costs, a route satisfaction evaluation function model has been developed. Utilizing this model, an enhanced Risk-Time Ant Colony Optimization (RT-ACO) routing algorithm is proposed, which builds upon the traditional ant colony algorithm. …"
-
20
Changes of risk value under different parameters.
منشور في 2025"…Based on a comprehensive assessment of service transmission reliability and time costs, a route satisfaction evaluation function model has been developed. Utilizing this model, an enhanced Risk-Time Ant Colony Optimization (RT-ACO) routing algorithm is proposed, which builds upon the traditional ant colony algorithm. …"