Showing 1 - 16 results of 16 for search '(( binary _ resource initialization algorithm ) OR ( binary image design optimization algorithm ))', query time: 0.60s Refine Results
  1. 1
  2. 2

    Dynamic resource allocation process. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  3. 3

    Sample image for illustration. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  4. 4
  5. 5

    Quadratic polynomial in 2D image plane. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  6. 6

    Confusion matrix. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  7. 7

    Parameter settings. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  8. 8

    Event-driven data flow processing. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  9. 9

    Comparison analysis of computation time. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  10. 10

    Process flow diagram of CBFD. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  11. 11

    Precision recall curve. by Indhumathi S. (19173013)

    Published 2024
    “…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
  12. 12

    Fortran & C++: design fractal-type optical diffractive element by I-Lin Ho (13768960)

    Published 2022
    “…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …”
  13. 13

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf by Cecilia Lindig-León (7889777)

    Published 2020
    “…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
  14. 14

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
  15. 15
  16. 16

    Seed mix selection model by Bethanne Bruninga-Socolar (10923639)

    Published 2022
    “…</p> <p>  </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …”