Showing 1 - 20 results of 24 for search '(( binary _ robust detection algorithm ) OR ( binary wave model optimization algorithm ))*', query time: 0.51s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf by Sai Sakunthala Guddanti (17739363)

    Published 2024
    “…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
  10. 10

    Related studies on IDS using deep learning. by Arshad Hashmi (13835488)

    Published 2024
    “…This imbalance can adversely affect the learning process of predictive models, often resulting in high false-negative rates, a major concern in Intrusion Detection Systems (IDS). By focusing on datasets with this imbalance, we aim to develop and refine advanced algorithms and techniques, such as anomaly detection, cost-sensitive learning, and oversampling methods, to effectively handle such disparities. …”
  11. 11

    The architecture of the BI-LSTM model. by Arshad Hashmi (13835488)

    Published 2024
    “…This imbalance can adversely affect the learning process of predictive models, often resulting in high false-negative rates, a major concern in Intrusion Detection Systems (IDS). By focusing on datasets with this imbalance, we aim to develop and refine advanced algorithms and techniques, such as anomaly detection, cost-sensitive learning, and oversampling methods, to effectively handle such disparities. …”
  12. 12

    Comparison of accuracy and DR on UNSW-NB15. by Arshad Hashmi (13835488)

    Published 2024
    “…This imbalance can adversely affect the learning process of predictive models, often resulting in high false-negative rates, a major concern in Intrusion Detection Systems (IDS). By focusing on datasets with this imbalance, we aim to develop and refine advanced algorithms and techniques, such as anomaly detection, cost-sensitive learning, and oversampling methods, to effectively handle such disparities. …”
  13. 13

    Comparison of DR and FPR of UNSW-NB15. by Arshad Hashmi (13835488)

    Published 2024
    “…This imbalance can adversely affect the learning process of predictive models, often resulting in high false-negative rates, a major concern in Intrusion Detection Systems (IDS). By focusing on datasets with this imbalance, we aim to develop and refine advanced algorithms and techniques, such as anomaly detection, cost-sensitive learning, and oversampling methods, to effectively handle such disparities. …”
  14. 14

    MCLP_quantum_annealer_V0.5 by Anonymous Anonymous (4854526)

    Published 2025
    “…Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …”
  15. 15
  16. 16
  17. 17

    Result comparison with other existing models. by Md. Sabbir Hossain (9958939)

    Published 2025
    “…This study introduces a novel lung cancer detection method, which was mainly focused on Convolutional Neural Networks (CNN) and was later customized for binary and multiclass classification utilizing a publicly available dataset of chest CT scan images of lung cancer. …”
  18. 18

    Dataset distribution. by Md. Sabbir Hossain (9958939)

    Published 2025
    “…This study introduces a novel lung cancer detection method, which was mainly focused on Convolutional Neural Networks (CNN) and was later customized for binary and multiclass classification utilizing a publicly available dataset of chest CT scan images of lung cancer. …”
  19. 19

    CNN structure for feature extraction. by Md. Sabbir Hossain (9958939)

    Published 2025
    “…This study introduces a novel lung cancer detection method, which was mainly focused on Convolutional Neural Networks (CNN) and was later customized for binary and multiclass classification utilizing a publicly available dataset of chest CT scan images of lung cancer. …”
  20. 20

    Enhancing digital pathology workflows: computational blur detection for H&E image quality control in preclinical toxicology by Cyrus Manuel (22770779)

    Published 2025
    “…To address this, we have integrated a pair of productionalized computational models – ‘MiQC’ (Microscopic Quality Control) – into our routine image QC workflows. MiQC combines Local Binary Patterns (LBP) and DeepFocus-based deep learning algorithms to detect and quantify out-of-focus regions in WSIs. …”