يعرض 1 - 17 نتائج من 17 نتيجة بحث عن '(( binary _ source initialization algorithm ) OR ( binary mask based optimization algorithm ))*', وقت الاستعلام: 1.00s تنقيح النتائج
  1. 1
  2. 2
  3. 3

    Python-Based Algorithm for Calculating Physical Properties of Aqueous Mixtures Composed of Substances Not Available in Databases حسب Jina Lee (3138492)

    منشور في 2025
    "…In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. …"
  4. 4

    Python-Based Algorithm for Calculating Physical Properties of Aqueous Mixtures Composed of Substances Not Available in Databases حسب Jina Lee (3138492)

    منشور في 2025
    "…In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. …"
  5. 5

    A* Path-Finding Algorithm to Determine Cell Connections حسب Max Weng (22327159)

    منشور في 2025
    "…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…"
  6. 6

    MARGO workflow, tracking algorithm, and sample behavioral box. حسب Zach Werkhoven (6473165)

    منشور في 2019
    "…Before tracking, users define an input source, define ROIs to track, initialize a background image used to separate foreground and background, and sample the image statistics on a reference of clean tracking. …"
  7. 7

    Flowchart scheme of the ML-based model. حسب Noshaba Qasmi (20405009)

    منشور في 2024
    "…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
  8. 8
  9. 9
  10. 10

    AUPRC of the ML models. حسب Adhiraj Nath (17118269)

    منشور في 2023
    "…</p><p>Aim</p><p>Application of machine learning algorithms to develop an open source tool for prediction of novel precursor microRNA in insects and search for their miRNA targets in the model insect organism, <i>Drosophila melanogaster</i>.…"
  11. 11

    Analysis of geo-spatiotemporal data using machine learning algorithms and reliability enhancement for urbanization decision support حسب Kwame O. Hackman (9289505)

    منشور في 2020
    "…Two classification algorithms – random forest (RF) and support vector machines (SVM) – were used to produce binary (built-up / non-built up) maps for all years within the temporal span. …"
  12. 12
  13. 13

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  14. 14
  15. 15

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. حسب Linus Woitke (22783534)

    منشور في 2025
    "…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …"
  16. 16

    PathOlOgics_RBCs Python Scripts.zip حسب Ahmed Elsafty (16943883)

    منشور في 2023
    "…<p dir="ltr">The first algorithm for segmentation and localization (see PathOlOgics_script_1; segment & localize using a pen) relied on manually tracing the borders of each cell using a digital pen tool on a big touchscreen display showing source images/patches. …"
  17. 17

    Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield... حسب Uttam Khatri (12689072)

    منشور في 2022
    "…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …"