Showing 1 - 20 results of 26 for search '(( binary a after optimization algorithm ) OR ( primary data codings optimization algorithm ))*', query time: 0.69s Refine Results
  1. 1
  2. 2
  3. 3

    Hierarchical clustering to infer a binary tree with <i>K</i> = 4 sampled populations. by Tristan Mary-Huard (3864)

    Published 2023
    “…After <i>K</i> − 2 = 2 steps, the resulting tree is binary and the algorithm stops.…”
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Table_1_Screening of Long Non-coding RNAs Biomarkers for the Diagnosis of Tuberculosis and Preliminary Construction of a Clinical Diagnosis Model.docx by Juli Chen (12187358)

    Published 2022
    “…Background<p>Pathogenic testing for tuberculosis (TB) is not yet sufficient for early and differential clinical diagnosis; thus, we investigated the potential of screening long non-coding RNAs (lncRNAs) from human hosts and using machine learning (ML) algorithms combined with electronic health record (EHR) metrics to construct a diagnostic model.…”
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    ECE6379_PSOM.zip by Xingpeng Li (11825663)

    Published 2021
    “…Optimization algorithms that are commonly used to solve these problems will also be covered including linear programming, mixed-integer linear programming, Lagrange relaxation, dynamic programming, branch and bound, and duality theory.…”
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems by Xuhui Lin (19505503)

    Published 2025
    “…</p><p dir="ltr"><b>Quality Assurance</b>: Comprehensive technical validation demonstrates the dataset's integrity, sensitivity to rainfall impacts, and capability to reveal complex traffic-weather interaction patterns.</p><h2>Data Structure</h2><p dir="ltr">The dataset is organized into four primary components:</p><ol><li><b>Road Network Data</b>: Topological representations including spatial geometry, functional classification, and connectivity information</li><li><b>Traffic Sensor Data</b>: Sensor metadata, locations, and measurements at both 5-minute and hourly resolutions</li><li><b>Precipitation Data</b>: Hourly meteorological information with spatial grid cell metadata</li><li><b>Derived Analytical Matrices</b>: Pre-computed structures for advanced spatial-temporal modelling and network analyses</li></ol><h2>File Formats</h2><ul><li><b>Tabular Data</b>: Apache Parquet format for optimal compression and fast query performance</li><li><b>Numerical Matrices</b>: NumPy NPZ format for efficient scientific computing</li><li><b>Total Size</b>: Approximately 2 GB uncompressed</li></ul><h2>Applications</h2><p dir="ltr">The IUTF dataset enables diverse analytical applications including:</p><ul><li><b>Traffic Flow Prediction</b>: Developing weather-aware traffic forecasting models</li><li><b>Infrastructure Planning</b>: Identifying vulnerable network components and prioritizing investments</li><li><b>Resilience Assessment</b>: Quantifying system recovery curves, robustness metrics, and adaptive capacity</li><li><b>Climate Adaptation</b>: Supporting evidence-based transportation planning under changing precipitation patterns</li><li><b>Emergency Management</b>: Improving response strategies for weather-related traffic disruptions</li></ul><h2>Methodology</h2><p dir="ltr">The dataset creation involved three main stages:</p><ol><li><b>Data Collection</b>: Sourcing traffic data from UTD19, road networks from OpenStreetMap, and precipitation data from ERA5 reanalysis</li><li><b>Spatio-Temporal Harmonization</b>: Comprehensive integration using novel algorithms for spatial alignment and temporal synchronization</li><li><b>Quality Assurance</b>: Rigorous validation and technical verification across all cities and data components</li></ol><h2>Code Availability</h2><p dir="ltr">Processing code is available at: https://github.com/viviRG2024/IUTDF_processing</p>…”
  20. 20